Module Descriptions

Master of Science Communications Technology

Absorption: Communications Circuits and Systems

Examination Regulations in the Version of: 2017
Index

Compulsory Modules

Digital Communications .. 1
Integrated Analog Circuits .. 3
Introduction to Microwave Communication Systems 5
Introduction to Microwave Engineering 7
Modern Semiconductor Devices 9
Monolithic Microwave ICs in High-Speed Systems 11
Optical Communications .. 13

Elective Modules

Special Modules

Special Subjects in Engineering

Advanced Channel Coding ... 16
Advanced Optoelectronic Communication Systems 19
Applied Information Theory .. 21
Biosensors and Biochips .. 24
Channel Coding .. 27
Circuit Design in Nanometer-Scaled CMOS Technologies 30
Communication Systems ... 32
Computer Networks ... 35
Compressed Sensing ... 37
Compound Semiconductors (Verbindungshalbleiter) 41
Cross-Organizational Distributed Systems and Clouds 43
Data Centre Networks Architecture and Protocols 45
Electronic System Design using C and SystemC 48
Embedded Security .. 51
Heterogeneous and Parallel Computing Infrastructures 55
Integrated Microwave Systems 57
Integrated Interface Circuits .. 59
Iterative Methods for Wireless Communications 62
Mixed-Signal CMOS Chip Design 64
Multiuser Communications and MIMO Systems 67
Neuronal Networks and Pattern Recognition 69
Optoelectronic Devices .. 71
Propagation and Antennas .. 73
Radio-Frequency Power-Amplifier Design 75
Satellite Communications and Navigation 77
Scientific Writing and Publishing 79
Semiconductor Sensors ... 81
Signal Theory ... 83
Technology for Micro- and Nanostructures 86
Using the Advanced Design System (ADS) in Electronic Design

Special Subjects in Computer Science and/or Mathematics

Optional Modules

- Additional Key Qualifications
- Cultural Crossroads for Communications Technology
- Technical Presentation Skills for Communications Technology

Practical Modules

- Practical Training
- Project Advanced Analog and Mixed-Signal CMOS Circuit Design
- Project Analog CMOS Circuit Design
- Project Design of Integrated Systems
- Project Dialogue Systems
- Project Radio Frequency Electronics
- Communication Networks
- Laboratory Digital Communications
- Laboratory Semiconductor Technology
- Laboratory Microcomputers
- Laboratory Optoelectronics
- Laboratory RF Engineering
- Laboratory Vector Network Analysis

Seminar

- Seminar Communications Engineering
- Seminar Heterostructure Devices and Circuits
- Seminar Microwave Circuits and Systems
- Seminar Research Trends in the Internet of Things

Additive Key Qualifications

- German as a Foreign Language for Communications Technology

Master Thesis

- Master’s Thesis
Digital Communications

Modules referring to Compulsory Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272270</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>7</td>
</tr>
<tr>
<td>Attendance time</td>
<td>6</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Robert Fischer, Dr. Werner Teich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of study programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrotechnik MSc, Kernmodul</td>
</tr>
<tr>
<td>Informationssystemtechnik MSc, Wahlpflichtmodul</td>
</tr>
<tr>
<td>Communications Technology MSc, Pflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>- signals and systems (discrete and continuous-time signals and systems)</td>
</tr>
<tr>
<td>- fundamentals of random variables and random processes</td>
</tr>
<tr>
<td>- fundamentals of communications (analog and digital transmission)</td>
</tr>
<tr>
<td>(e.g., modul "Einführung in die Nachrichtentechnik")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students will be able to assess, compare, and design state-of-the-art digital communication schemes. They can operate with equivalent complex baseband signals and systems and appraise the action of systems on stochastic processes. Digital pulse amplitude modulation and its variants can be explained and devised. The representation of signals in a signal space can be formulated and applied for designing optimum receivers. Oherent and non-coherent approaches can be discriminated. Digital modulation formats can be assessed in the power-bandwidth plane. The students will identify and characterize the action of distorting channels and are able to design and evaluate suitable equalizers. The concepts of single- and multi-carrier transmission can be explained, justified and synthesized for new applications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction</td>
</tr>
<tr>
<td>- Equivalent complex baseband</td>
</tr>
</tbody>
</table>
- Fundamentals of digital communications / digital pulse amplitude modulation (PAM)
- Variants of PAM transmission (CAP, MSK, GMSK) / non-coherent transmission
- Signal space representation
- FSK, CPM
- Channel models and digital transmission over dispersive channels
- Orthogonal frequency-division multiplexing

Literature

Teaching and learning methods
- Lecture "Digital Communications", 4 SWS
- Exercise "Digital Communications", 2 SWS

Workload
- Active Time: 80 h
- Preparation and Evaluation: 70 h
- Self-Study: 60 h
- Sum: 210 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
- Multuser Communications and MIMO Systems
- Iterative Methods for Wireless Communications
- Digital Communications Lab
Integrated Analog Circuits
Modules referring to Compulsory Modules

Code 8822272269

ECTS credits 6

Attendance time 4

Language of instruction English (Summer Term) / German (Winter Term)

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Maurits Ortmanns

Instructor(s) Prof. Dr.-Ing. Maurits Ortmanns
 Prof. Dr.-Ing. Hermann Schumacher
 Jun.-Prof. Dr. Jens Anders

Allocation of study programmes
- Elektrotechnik, M.Sc, PO2008, PO2010, PO2012, Wahlmodul
- Elektrotechnik, M.Sc, PO2014, Kernmodul
- Informationssystemtechnik, M.Sc, PO2008, PO2010, PO2012, PO2014, Kernmodul
- Communications Technology, M.Sc., PO 2012, Elective Module
- Communications Technology, M.Sc., PO 2015, Track Communications Circuits and Systems, Compulsory Module
- Communications Technology, M.Sc., PO 2015, Tack Communications Engineering, Elective Module

Recommended prerequisites Basic knowledge of semiconductor devices, analog circuits, control theory and signal processing

Learning objectives The students differentiate various semiconductor devices and technologies. They compare the behavior and application of the MOST and the BJT. They are able to compare various compact models. The students are able to describe the behavior of the MOS transistor, explain its operation and describe the impact and influence of electrical, manufacturing and environmental non-idealities. They describe and analyze a transistor level circuit using small signal parameters and derive transfer functions for the linearized model. The students differentiate the operation and application of single stage amplifiers and use circuit techniques for gain enhancement. They adopt these methods to design and analyze differential amplifiers. They use advanced concepts for frequency compensation and stabilization. The students can compare the advantages and application of several multistage differential amplifier concepts, analyze and design those amplifiers. They use circuit simulators in order to design these single stage and differential amplifiers for a given specification. The students describe the origin
of electronic noise, analyze simple circuits concerning noise contribution, adopt the principle of input referred noise in amplifiers, and explain design based as well as architectural noise reduction techniques. The students describe the concept of switched capacitor circuits, analyze their behavior and apply them for analog signal processing. They are able to apply the principles of analog integrated circuit design to further applications. They describe and compare the functionality of various concepts for analog-to-digital and digital-to-analog converters. The students describe the principal of oversampling and noise shaping and apply this to the concept of sigma-delta modulators.

<table>
<thead>
<tr>
<th>Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Devices and non-idealities</td>
</tr>
<tr>
<td>- MOS and Bipolar transistors including signal parameters and non-idealities</td>
</tr>
<tr>
<td>- On-chip bias generation</td>
</tr>
<tr>
<td>- Review of basic analog circuits</td>
</tr>
<tr>
<td>- Single-stage CMOS amplifiers</td>
</tr>
<tr>
<td>- Enhanced CMOS amplifier concepts</td>
</tr>
<tr>
<td>- Two-stage CMOS amplifiers with frequency compensation</td>
</tr>
<tr>
<td>- Introduction to electronic noise</td>
</tr>
<tr>
<td>- Switched-Capacitor Circuits</td>
</tr>
<tr>
<td>- A/D and D/A converters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley</td>
</tr>
<tr>
<td>- Sansen, W. „Analog Design Essentials“, Springer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture "Integrierte Analogschaltungen" (Integrated Analog Circuits), 3 SWS</td>
</tr>
<tr>
<td>Practical Exercises "Integrierte Analogschaltungen" (Integrated Analog Circuits), 1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Time: 60 h</td>
</tr>
<tr>
<td>Preparation and Evaluation: 120 h</td>
</tr>
<tr>
<td>Sum: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The grade of the module will be the grade of the exam.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project: Analog CMOS Circuit Design</td>
</tr>
<tr>
<td>Lecture: Circuit Design in Nanometer-Scaled CMOS Technologies</td>
</tr>
<tr>
<td>Elective Modules</td>
</tr>
<tr>
<td>Master-Thesis</td>
</tr>
</tbody>
</table>
Introduction to Microwave Communication Systems
Modules referring to Compulsory Modules

Code 8822272472

ECTS credits 5

Attendance time 3

Language of instruction englisch

Duration 1 Semester

Cycle each Winter Semester

Coordinator Prof. Dr.-Ing. Christian Waldschmidt

Instructor(s) Prof. Dr.-Ing. Christian Waldschmidt
Prof. Dr.-Ing. Christian Damm
Dr.-Ing. Frank Bögelsack

Allocation of study programmes Communications Technology, M.Sc., Compulsory Subject Module

Recommended prerequisites Module "Introduction to Microwave Engineering"

Learning objectives After successful completion of this module, students are able to describe electromagnetic waves on transmission lines and passive components. They are able to analyse fundamental properties of mixers and oscillators, in particular under consideration of the non-linear behavior and phase noise. After successfull completion of this module, they are able to design and to characterize experimentally RF systems for communications. They are able to assess the advantages and disadvantages of different transmit and receive systems and subsystems. They can determine the noise and power budget of a transmit receive system, allowing them to do own design work.

Syllabus This lecture introduces students into various aspects of radio communications. Wireless systems are decomposed into subsystems as transmitters, radio channels, and receivers. These systems are systematically analyzed and subdivided into further subsystems. The objective of this lecture is to mediate all necessary tools for successfully analyzing existing radio-communication systems, and for designing new ones. The lecture covers in
particular system aspects of:
- transmission line types and passive components,
- frequency conversion, mixers,
- oscillators and PLL,
- mixer noise and phase noise,
- large signal behavior and intermodulation,
- amplifiers (small and large signal behavior),
- design principles and architectures for receivers, transmitters,
- power link budgets.

<table>
<thead>
<tr>
<th>Literature</th>
<th>- Lecture handout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Text books: see lecture handout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Lecture “Introduction to Microwave Communication Systems”, 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise “Introduction to Microwave Communication Systems”, 1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Active Time: 45 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation and Evaluation: 60 h</td>
</tr>
<tr>
<td></td>
<td>Self-Study: 45 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 150 h</td>
</tr>
</tbody>
</table>

| Assessment | The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration |

| Grading procedure | The grade of the module will be the grade of the exam. |

| Basis for | - |

Introduction to Microwave Engineering

Modules referring to Compulsory Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272473</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>5</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>english</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Christian Waldschmidt</td>
</tr>
</tbody>
</table>
| Instructor(s) | Prof. Dr.-Ing. Christian Waldschmidt
 Prof. Dr.-Ing. Christian Damm
 Dr.-Ing. Frank Bögelsack |
| Allocation of study programmes | Communications Technology, M.Sc., Compulsory Subject Module |
| Recommended prerequisites | - |

Learning objectives

After successful completion of this module, students are able to describe voltage and current waves and to understand the relation to plane waves. Using the Smith chart the students are able to characterize complex impedances and to design matching networks. They are familiar with the method of the signal flow graph to describe linear time-invariant n-ports with means of scattering parameters. The students have a good knowledge of the basics of the field theory and the calculation of losses using the Skin effect approximation. They are able to identify and to describe important properties of components used in RF and microwave engineering. They are familiar with noise analysis of linear matched two-ports as well as of the concatenation of circuits using the chain noise figure. They are able to design Butterworth and Chebyshev filters. They are capable to find new approaches for unknown problems in RF and microwave engineering area.

Syllabus

The module covers in particular the following subjects:
- Basics of the electromagnetic field theory
- Plane waves
- Current and voltage waves on (TEM-) lines, power waves
- Relations of these waves to electromagnetic waves- Skin effect
- Reflection of waves at complex line-terminations
- Smith chart
- Impedance transformation by lines and other circuit components
- Realistic components- Description of linear time-invariant wave-N-ports by scattering parameters
- Signal flow graph
- Components like filters, couplers, amplifiers (overview, not a detailed description)
- Electronic noise
- Basics on antennas, antenna types

<table>
<thead>
<tr>
<th>Literature</th>
<th>- Lecture handout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Text books: see lecture handout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Lecture “Introduction to Microwave Engineering”, 3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise “Introduction to Microwave Engineering”, 1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Active Time: 60 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation and Evaluation: 45 h</td>
</tr>
<tr>
<td></td>
<td>Self-Study: 45 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 150 h</td>
</tr>
</tbody>
</table>

| Assessment | The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration |

| Grading procedure | The grade of the module will be the grade of the exam. |

<table>
<thead>
<tr>
<th>Basis for</th>
<th>This module is a prerequisite for the modules:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Introduction to Microwave Communication Systems,</td>
</tr>
<tr>
<td></td>
<td>- Lab RF Engineering</td>
</tr>
</tbody>
</table>
Modern Semiconductor Devices
Modules referring to Compulsory Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822271228</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Hermann Schumacher</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Hermann Schumacher Jun.-Prof. Dr. Steffen Strehle</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Basic knowledge of solid-state physics: semiconductors; band structure in real and in k-space; drift and diffusive transport</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>Students recognize the importance of energy band diagrams for the analysis and appraisal of advanced electronic devices. They then discover how doping variations and heterostructures are used in current semiconductor devices to control the distribution and motion of free charge carriers. Relevant transistor structures are differentiated according to their charge control mechanism. Students then identify large signal and small signal equivalent circuits, and discuss how intrinsic physical mechanisms are reflected at the component and circuit level. They relate geometrical constraints of high speed transistor families to their economic importance, and briefly review important microfabrication techniques.</td>
</tr>
</tbody>
</table>
| Syllabus | Semiconductor Fundamentals:
- Energy band diagrams
- Doping
- MOS-, pn- and Schottky junctions
- Semiconductor Heterostructures |
Electronic semiconductor devices:
- MOSFET
- MESFET
- HEMT
- BJT
- HBT

Application aspects of semiconductor devices in RF/microwave communications systems:
- Performance parameters
- System requirements
- Economical issues

Literature
- Simon Sze, Physics of Semiconductor Devices
- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelectronics (Chapter 1 and 2)
- Full set of slides, video sequences on e-learning platform

Teaching and learning methods
Lecture “Modern Semiconductor Devices”, 2 SWS
Exercise “Modern Semiconductor Devices”, 1 SWS
Laboratory “Modern Semiconductor Devices”, 1x2 hours (one event)

Workload
Active Time: 36 h
Preparation and Evaluation: 84 h
Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
- Microfabrication lab (compulsory prerequisite)
- Monolithic Microwave ICs in High-Speed Systems (recommended)
Monolithic Microwave ICs in High-Speed Systems

Modules referring to Compulsory Modules

Code 8822270457

ECTS credits 6

Attendance time 4

Language of instruction english

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Hermann Schumacher

Instructor(s) Prof. Dr.-Ing. Hermann Schumacher
Prof. Dr.-Ing. Heinrich Dämbkes

Allocation of study programmes

- Electrical Engineering, M.Sc., Elective Module, Microelectronics
- Electrical Engineering, M.Sc., Elective Module, Automation and Energy Technology
- Communications Technology, M.Sc., Communications Circuits and Systems Track
- Communications Technology, M.Sc., Communications Engineering Track

Recommended prerequisites

Radio Frequency Engineering; Modern Semiconductor Devices

Learning objectives

Students recognize fundamental requirements of microwave and millimeter-wave communication and sensing systems. They review and analyze important circuit topologies and identify those which meet the requirements. They then synthesize circuits to meet the requirements of select examples, assess their performance using computer aided design tools, and compare the results obtained with the requirements.

Syllabus

- General overview of MMIC design techniques
- Important CAD tools and models
- Substrate properties and their impact on MMIC design techniques
- Fundamental building blocks
 - Low noise amplifiers
 - Wideband amplifiers
 - Distributed circuit topologies
 - Oscillators
 - Mixers
 - Frequency multipliers and dividers
- Phase locked loop concepts
- Introduction to practical design using the Keysight ADS design environment

Literature

- D.M. Pozar: Microwave Engineering, Addison-Wesley, 1990
- R.S. Elliott: An Introduction to Guided Waves and Microwave Circuits, Prentice-Hall, 1993
- G. Matthaei, L. Young & E. Jones: Microwave Filters, Impedance-Matching Networks & Coupling Structures, Artech House, 1980
- C.G. Montgomery, R.H. Dicke and E.M. Purcell: Principles of Microwave Circuits (reprint of Radiation Laboratory volume 8), IEEE Press, 1987
- F.E. Gardiol: Introduction to Microwaves, Artech House, 1984
- S. Prasad, H. Schumacher, A. Gopinath, High Speed Electronics and Optoelectronics (Chapter 5)

Teaching and learning methods
The course is conducted in a flipped classroom setting. Students review video lectures in their own time, classroom time is devoted to discussing the lecture content, applying the subject matter to examples, and practical design exercises.

Workload

Review of video lectures including online Q&A: 42 h
Classroom discussions and design exercises: 26 h
Preparation of design practice sessions (labs): 34 h
Participation in design practice sessions: 27 h
Exam preparation, incl. design: 50 h
Exam participation: 1 h
Total: 180 h

Assessment
The credit points will be awarded once the oral exam has been passed. No prerequisites are necessary for exam registration.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
Master thesis on microwave IC design
Optical Communications

Modules referring to Compulsory Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822271723</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>apl. Prof. Dr.-Ing. habil. Rainer Michalzik</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>apl. Prof. Dr.-Ing. habil. Rainer Michalzik</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>Electrical Engineering, M.Sc., Elective Module, Communications Technology, M.Sc., Compulsory Subject Module</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Bachelor. No prerequisites from other modules required. Some basic knowledge of semiconductor physics and devices would be helpful</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>The students are able to summarize the benefits of optical versus electrical data transmission. They can employ a ray-optical model to describe the light propagation in optical waveguides and can identify situations where a wave-optical model is needed. The students can name and sketch different kinds of optical fibers as well as discuss the associated dispersion mechanisms which lead to bandwidth limitations. Origins of loss in optical fibers can be listed and fiber fabrication be outlined. They can state boundary conditions of field variables to formulate characteristic equations for waveguide problems. The students can describe the structure of common semiconductor crystals as well as the composition dependence of parameters required to model the wave propagation. Appropriate semiconductor material systems for particular applications can be selected and interband transition mechanisms be sketched. They are able to explain the operation of a light emitting diode and rate their use in fiber-based optical communication systems. The students can illustrate the function of a laser diode and name the contributions to the laser rate equations. They master to solve the rate equations for static and dynamic operating conditions. The students can discuss the role of a pn-junction for light detection. Factors influencing the efficiency and the bandwidth of a photodiode can be pointed out. They can relate the current noise in a photoreceiver to the measured bit error ratio of a digital optical communication link. The optical power budget can be calculated. The students are able to list and discuss multiplexing techniques for increasing the data throughput of an optical communication system. The basic function of optical</td>
</tr>
</tbody>
</table>
(de-)multiplexing devices can be stated. They can moreover sketch the building blocks of an optical repeater and explain the operation of an optical fiber amplifier.

Syllabus

This module provides a solid basis for understanding fiber-optic data transmission systems. Important components like the silica optical fiber as transmission medium, light emitting diode or laser diode transmitters, optical amplifiers, as well as photodiode receivers are discussed in some detail. The entire system is characterized in terms of its bit error ratio performance and its power budget. The following topics are addressed:

- Properties of optical communication systems
- Optical fibers: ray-optical model, step-index and graded-index fibers, wave-optical model, chromatic dispersion
- Wave propagation in planar waveguides
- Loss in optical fibers: absorption and scattering
- Fabrication of fibers
- Semiconductor materials: crystal lattices, direct and indirect bandgaps, mixed compound semiconductors, absorption and refractive index, emission and absorption
- Light-emitting diodes for communications
- Laser diodes
- Photodiodes
- Optical communication systems: detection sensitivity for digital signals, optical power budget
- Signal multiplexing: electrical time division multiplexing (ETDM), dense and coarse wavelength division multiplexing (WDM), optical (de-)multiplexing devices, space division multiplexing (SDM)
- Signal restoration: electronic repeater, erbium-doped fiber amplifier (EDFA), alternative optical amplifiers
- Laser diodes
- Photodiodes
- Optical communication systems: detection sensitivity for digital signals, optical power budget
- Signal multiplexing: electrical time division multiplexing (ETDM), dense and coarse wavelength division multiplexing (WDM), optical (de-)multiplexing devices, space division multiplexing (SDM)
- Signal restoration: electronic repeater, erbium-doped fiber amplifier (EDFA), alternative optical amplifiers

Literature

A comprehensive English written manuscript is provided

Teaching and learning methods

Lecture “Optical Communications”, 3 hours per week
Exercise “Optical Communications”, 1 hours per week

Workload

Preparation and Evaluation: 56 h
Active Time: 49 h
Self-Study: 75 h
Sum: 180 h

Assessment

The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration
Grading procedure The grade of the module will be the grade of the exam.

Basis for Lecture "Advanced Optoelectronic Communication Systems", Lecture "Optoelectronic Devices", Laboratory "Optoelectronics"
Advanced Channel Coding
Modules referring to Special Subjects in Engineering

Code 8822270442
ECTS credits 4
Attendance time 3
Language of instruction English
Duration 1 Semester
Cycle each Summer Semester
Coordinator Prof. Dr.-Ing. Martin Bossert
Instructor(s) Prof. Dr.-Ing. Georg Schmidt

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology

Recommended prerequisites
Bachelor. Linear Algebra, Probability Theory, Combinatorics, elementary Galois Theory

Learning objectives
The students can analyze, evaluate and compare coding schemes for error detection and error correction which are currently and in future systems used for data transmission, data storage, and data processing. Especially different decoding algorithms, those based on iterative methods as well as those based on algebraic methods can be categorized and combined.

Syllabus
The contents of the lecture can be grouped into two blocks: iterative decoding methods and algebraic decoding methods, which are suited for different kinds of applications. Iterative decoding methods are interesting for operating points close to capacity in applications where codes with large block lengths can be applied. In the lecture, two classes of iterative decoding schemes will be considered. The class of Turbo Codes was introduced 1993 by C. Berrou, A. Glavieux and P. Thitimajshima. A Turbo Code consists of simple parallel concatenated component codes, which can efficiently be decoded by a symbol-by-symbol A
Posteriori Probability (s/s APP) decoder. Such an s/s APP decoder is capable of utilizing reliability information from the channel and can compute reliabilities for the code symbols. After formally introducing the concept of reliabilities on the basis of probabilities, the principle of s/s APP decoding will be explained. After this, several tools for analyzing Turbo decoders are considered. Another class of iteratively decodable codes is the class of Low Density Single Parity Check (LDPC) codes. Such codes are either described by sparsely occupied matrices or by bipartite graphs. Both descriptions will be considered, and it will be explained how LDPC codes can be constructed on the basis of these descriptions. After explaining how LDPC codes can be decoded iteratively, tools for analyzing them will be considered. Algebraic decoding of Reed-Solomon (RS) codes is used in many technical data transmission and data storage systems like hard disks, CDs, DVDs, digital video broadcasting, and many other applications. Two types of decoding strategies will be considered: syndrome-based decoding and interpolation-based decoding. Syndrome-based techniques for decoding Reed-Solomon codes are known for more than 30 years, and allow for decoding errors up to half the minimum code distance. Since such methods can be implemented very efficiently, they are applied in many algebraic error correcting schemes. After introducing these classical syndrome-based methods, it will be explained how these techniques may be applied in interleaved Reed-Solomon (IRS) schemes for decoding errors beyond half the minimum code distance. In 1997, M. Sudan proposed a novel algorithm for decoding RS codes, which is based on bivariate polynomial interpolation. This algorithm can also decode errors beyond half the minimum code distance by creating lists of codewords to resolve ambiguous decoding situations. Moreover, derivatives of the Sudan algorithm are capable of using lists of symbols at their inputs. The principles behind such interpolation-based techniques will be considered in the last part of the lecture. It will be explained how the list decoding concept can be used for decoding errors beyond half the minimum code distance, and how the problem of list decoding is solved by the Sudan algorithm and its derivatives. In the exercise, students have the opportunity to implement selected algorithms from the lecture using MATLAB under guidance of a research assistant.

Topics:
Iterative Decoding Methods Turbo-Codes
- A Posteriori Probability (APP) Decoding
- Intrinsic and Extrinsic Information
- Statistical Analysis Methods like Monte-Carlo Simulation and Exit-Chart-Analysis
Low Density Single Parity Check (LDPC) Codes
- Matrix and Graph Representation of LDPC Codes
- Code Construction
- Iterative Decoding by "Message Passing"
- Statistical and Graph-Based Analysis Methods like Density Evolution and Stopping Sets
Algebraic Decoding Methods Syndrome-Based Techniques
- Reed-Solomon (RS) Codes
- Classical Decoding Approaches like the Peterson-Gorenstein-Zierler and Forney Algorithms
- Interleaved Reed-Solomon (IRS) Codes and Collaborative Decoding
Interpolation-Based Techniques
- Interpretation of the Decoding Problem as a Polynomial Interpolation Problem
- The Sudan Algorithm and its Derivatives
- List Decoding Concepts

Literature
- Roth R., Introduction to Coding Theory, Cambridge University Press, 2006
- Justesen J. and Hoeholdt, T., A Course In Error Correcting Codes, EMS Publishing House, 2004
- Bossert M., Channel Coding for Telecommunications, John Wiley & Sons, 1999

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Lecture “Advanced Channel Coding”, 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise “Advanced Channel Coding”, 1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Active Time: 38 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation and Evaluation: 32 h</td>
</tr>
<tr>
<td></td>
<td>Self-Study: 50 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 120 h</td>
</tr>
</tbody>
</table>

| Assessment | The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration |

| Grading procedure | The grade of the module will be the grade of the exam. |

| Basis for | - |

Master of Science Communications Technology Date printed: 19. Juli 2018 page 18 of 133
Advanced Optoelectronic Communication Systems
Modules referring to Special Subjects in Engineering

Code 8822270451

ECTS credits 6

Attendance time 4

Language of instruction English

Duration 1 Semester

Cycle each Winter Semester

Coordinator apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Instructor(s) apl. Prof. Dr.-Ing. habil. Rainer Michalzik

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Elective Module, Microelectronics
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Communications Technology, M.Sc., Optional Technical Module, Microelectronics

Recommended prerequisites Optical Communications
Modules “Optical Communications” or “Einführung in die Optoelektronik”

Learning objectives The students can outline the multiplexing techniques used in high-capacity optical transmission systems and discuss their pros and cons. They are able to list available types of single-mode optical fibers and explain how to make fibers more insensitive to bends. They can quantify the transmission distance limitations imposed by modal, chromatic, or polarization mode dispersion and can employ dispersion management as a remedy. The students are able to name and describe nonlinear effects in fibers. They can illustrate different types of optical amplifiers and point out their strengths and weaknesses. They are able to explain the principles of fiber Bragg gratings and select their parameters according to the application. The students can sketch devices suitable for optical multiplexing and demultiplexing and express the merits of planar lightwave circuits. They can illustrate various types of optical switches implemented as optical micro-electromechanical systems. The students are able to discuss the optical, electronic, and electrical confinement techniques used laser diodes. They recognize the importance of distributed Bragg reflector, distributed feedback, as well as vertical-cavity surface-emitting lasers and can sketch their layer structures and explain their operation. The students are able to show how serial data rates in optical links can be increased with modulator-assisted phase modulation allowing the implementation of higher-order modulation formats. They can also describe the
principles of corresponding optical receivers as well as the technique of coherent detection.

Syllabus

This module provides an advanced overview over modern optical telecommunication and datacom systems as well as associated optoelectronic devices. The students will be able to understand the operation principles, potentials as well as limitations of various technologies. The following topics are addressed:

- Introduction to optical communication systems
- Multiplexing techniques and high-capacity DWDM systems
- The CWDM approach
- Single-mode fiber types and bending-insensitive fibers
- Fiber dispersion limitations and dispersion management
- Polarization mode dispersion
- Nonlinear fiber transmission effects
- Optical amplifiers: EDFA, Raman and semiconductor optical amplifiers
- Fiber Bragg gratings
- Devices for optical multiplexing and demultiplexing
- Planar lightwave circuits
- Optical MEMS
- Photon, carrier, and current confinement in laser diodes
- Advanced laser diodes for use in telecommunications: DBR and DFB lasers
- Vertical-cavity surface-emitting lasers (VCSELs) for datacom applications
- 100 Gbit/s transmission systems: Mach–Zehnder modulators, higher-order modulation formats and coherent detection

Literature

A comprehensive English written manuscript is provided

Teaching and learning methods

Lecture “Advanced Optoelectronic Communication Systems”, 3 hours per week
Exercise “Advanced Optoelectronic Communication Systems”, 1 hours per week

Workload

Active Time: 40 h
Preparation and Evaluation: 64 h
Self-Study: 76 h
Total: 180

Assessment

The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Applied Information Theory
Modules referring to Special Subjects in Engineering

Code 882270422

ECTS credits 8

Attendance time 6

Language of instruction English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Martin Bossert

Instructor(s) Prof. Dr.-Ing. Martin Bossert

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Elective Module, Communication and System Technology
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Communications and Computer Engineering, M.Sc., Elective Module, Communications Technology, M.Sc., Optional Technical Module, Communications Engineering
Computer Science, M.Sc., Specialization Subject, Informationstheorie

Recommended prerequisites
- Bachelor
- Probability theory

Learning objectives
Information theory provides a measure for information and describes fundamental limits for communication and storage systems with respect to source coding, channel coding, multi-user communication, and cryptology. The students will be able to explain, apply and analyze lossless and lossy source coding algorithms (data compression). Furthermore, they will be able to evaluate the performance with respect to the source coding theorem which states that Shannon's uncertainty is the fundamental limit for compression. They can describe and analyze the channel capacity as the fundamental limit of information which can be transmitted error free over a channel using an appropriate code with a certain rate. With this context they can categorize and evaluate channels and transmission methods. For the omnipresent Gaussian noise the channel capacity can be calculated and interpreted. For basic multi-user communication scenarios (broadcast and multiple access) fundamental algorithms (Tomlinson-Harashima, superposition coding, etc.) and their application can be analyzed and evaluated based on the mutual information.
These algorithms and methods enable the students to analyze and categorize also scenarios which are not treated in the module or will be developed in the future.
The information theoretic point-of-view of cryptology enables the students to compare, categorize, and evaluate crypto algorithms.

Syllabus

Information theory is the basis of modern telecommunication systems. Main topics of information theory are source coding, channel coding, multi-user communication systems, and cryptology. These topics are based on Shannon's work on information theory, which allows to describe information with measures like entropy and redundancy. After a short overview of the whole area of information theory, we consider concepts for statistical modeling of information sources and derive the source coding theorem. Afterwards, important source coding algorithms like Huffman, Tunstall, Lempel-Ziv and Elias-Willems are described. The second part of the lecture investigates channel coding. Important properties of codes and fundamental decoding strategies are explained. Moreover, we introduce possibilities for estimating the error probability and analyze the most important channel models according to the capacity introduced by Shannon. The Gaussian channel is very important, and therefore, described extensively. The third part deals with aspects of multi-user communication systems.

We introduce several models and investigate methods that can achieve the capacity regions. Finally, we give an introduction on data encryption and secure communication. In the projects, several information theoretic topics (e.g., Lempel-Ziv-coding) will be investigated by means of implementation tasks.

Overview: Basics:
- Uncertainty (entropy), mutual information
- Fanos lemma, data processing lemma, information theory inequality

Source Coding:
- Shannon's source coding theorem
- Coding methods for memoryless sources: Shannon-Fano-, Huffman-, Tunstall, and arithmetic coding
- Coding for sources with memory

Channel Coding:
- Concepts of linear binary block codes
- Shannon's channel coding theorem
- Random coding and error exponent
- MAP (maximum a-posteriori) and ML (maximum likelihood) decoding
- Bounds (Bhattacharriyya, union, etc.)
- Channels and capacities: Gaussian channel, fading channel

Multi-User Systems:
- Duplex transmission
- MAC (multiple access) channel
- BC (broadcast) channel
- MIMO (multiple input multiple output) channel

Cryptology:
- Problem settings in cryptology
- IT-security

Projects: Universal Source Coding (Lempel-Ziv-coding) and Mutual Information

Literature

- Cover, Thomas: Elements of Information Theory, Wiley
- Script 2009 (in German)
- Johannesson: Informationstheorie - Grundlagen der (Tele-) Kommunikation, Addison-Wesley
| **Teaching and learning methods** | Lecture “Applied Information Theory”, 3 SWS
Exercise “Applied Information Theory”, 2 SWS
Project “Applied Information Theory”, 1 SWS |
|-------------------------------|---|
| **Workload** | Active Time: 90 h
Preparation and Evaluation: 150 h
Sum: 240 h |
| **Assessment** | The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration |
| **Grading procedure** | The grade of the module will be the grade of the exam. |
| **Basis for** | für Communication Engineering and Wireless |
Biosensors and Biochips
Modules referring to Special Subjects in Engineering

Code 8822273028

ECTS credits 8

Attendance time 4

Language of instruction English

Duration 1 Semester

Cycle each Winter Semester

Coordinator Dr. Alberto Pasquarelli

Instructor(s) Dr. Alberto Pasquarelli

Allocation of study programmes
Advanced Materials. M.Sc., Advanced lecture
Biophysics, M.Sc., Specialization Module
Communications Technology:
- M.Sc., track ME/CCS, In-depth Module
- M.Sc., both tracks CE and CCS (FSPO2015), Supplementary Module
Electrical Engineering, M.Sc., In-depth Module

Recommended prerequisites Basic knowledge of chemistry and biochemistry help to understand the biological part of biosensors.

Learning objectives
The world-wide need for chemical detection and analysis rise steadily. Several reasons lead to this trend, for instance, the rapid increase in the prevalence of diabetes, the increasing need for environmental and health monitoring, new legislative standards for food and drug quality control or even the early detection of biological and chemical terror attacks. Thanks to higher sensitivity and specificity, short response times and reduction of overall costs, biosensors can be very competitive in addressing these needs when compared to traditional methods.

Students can describe basic principles, mechanisms of action and applications of biosensors in different scenarios. After taking this module, participants can analyze biosensors, break-down the elementary components and identify and illustrate every individual function in the information flow, from recognition to transduction and transmission. Students illustrate the clinical and industrial applications in different biosensor market sectors, e.g. commodities for everyday
consumer needs or professional equipments for research. Furthermore, they are able to understand and critically analyze research in biosensors. Finally, students are able to develop appropriate concepts and independently propose solutions for given problems.

Syllabus
- Introduction to biosensors
- Applications overview
- Biological detection methods: catalytic, immunologic, etc.
- Physical transduction methods: electrochemical, optical, gravimetric, etc.
- Immobilization techniques: adsorption, entrapment, cross-linking, covalent bonds
- Biochip technologies: DNA and protein chips, Ion-channel devices, MEA and MTA, Implants
- Laboratory practice with assigned projects carried-out in small groups with final report and demonstration in the class
- Extras: Student seminars, invited talk(s), excursion

Literature
- Lecture Notes
- Further suggested books for deeper inside view:
 - Handbook of Biosensors and Biochips, ISBN 9780470019054
 - Jay: Modern Food Microbiology, ISBN: 9780387234137

Teaching and learning methods
- Lecture "Biosensors and Biochips", 4 SWS
- Student seminar, 0.25 SWS
- Laboratory project, 20 h
- Excursion complete day (Not compulsory)

Workload
- Active Time: 80 h
- Preparation and Evaluation: 120 h
- Self-Study: 40 h
- Sum: 240 h

Assessment
The grade of the module will be the grade of the written exam. Prerequisite for exam registration is passing the pre-course (to be defined by the examiner).

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
Masters Thesis in the area of biosensors.
Channel Coding

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822270426</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>8</td>
</tr>
<tr>
<td>Attendance time</td>
<td>6</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Martin Bossert</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Martin Bossert</td>
</tr>
</tbody>
</table>

Allocation of study programmes

- Electrical Engineering, M.Sc., Elective Module, Engineering Sciences Technology
- Electrical Engineering, M.Sc., Elective Module, Communication and System Technology
- Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
- Communications and Computer Engineering, M.Sc., Elective Module, Communications Technology, M.Sc., Compulsory Subject Module, Engineering
- Computer Science, M.Sc., Specialization Subject, Informationstheorie

Recommended prerequisites

Bachelor

Learning objectives

Forward error detection and correction are part of any system for transmission and storage of information in order to protect the information against disturbances during transmission or write/read processes. The students will be able to order, identify, and design block- and convolutional codes as well as coded modulation. Codes with arbitrary parameters - within the fundamental limits - can be composed and rated with generator and parity check matrices and polynomials. They can list, apply, and evaluate (hard, soft, iterative) decoding algorithms for binary and non binary block codes and for convolutional codes. Further, they can explain the fundamental theory and are able to analyze, categorize, and evaluate the majority of code constructions and decoding algorithms also the ones which are not explicitly treated in this module and the ones which will be developed in the future. The students can explain fundamental limits of code parameters and decoding and can create their own code constructions and examine and compare them and their decoding.
Syllabus

Channel coding has become an essential part in communication and storage systems. Block and convolutional codes are used in all digital standards. The aim of channel coding is to protect the information against disturbances during transmission or write/read processes. Thereby redundancy is added for error detection and for error correction. This course is about basic concepts in channel coding and gives an introduction to the more advanced methods of coded modulation. Lecture topics:

Linear block-codes

- Generator and parity-check matrix
- Cosets
- Principles of decoding
- Hamming codes
- Bounds for code parameters (Hamming-, Singleton-, Gilbert-Varshamov-Bounds)
- Trellis representation of block-codes
- Plotkin construction, Reed-Muller (RM) codes (relationship to binary PN- and Walsh-Hadamard sequences)
- APP and ML decoding (sequence and symbol based)

Algebraic coding

- Prime fields, primitive elements, component- and exponent representation
- Reed-Solomon (RS) codes as cyclic codes with generator- and checkpolynomials
- Algebraic error and erasure correction with the Euclidean algorithm
- BCH codes (as subfield subcodes of RS codes)
- The perfect Golay-code as non-primitive BCH-code
- Decoding of algebraic codes (key equation, Euclidean- and Berlekamp-Massey algorithm)

Convolutional codes

- Algebraic properties
- State Diagram
- Trellis representation
- Error correction capabilities of convolutional codes
- Viterbi- and BCJR algorithm (flow in graphs)

Further coding and decoding techniques

- LDPC codes
- Permutations-, Majority- and Information-Set decoding
- Dorsch algorithm (ordered statistics decoding)
- Parallel (Turbo)- and serial concatenated codes and their iterative decoding

Introduction to generalized code concatenation and coded modulation Project orientated Lab: LDPC, RS decoding, RM-codes

Literature

- Bossert, M.: Channel Coding for Telecommunications, Wiley & Sons, 1999

Teaching and learning methods

Lecture “Channel Coding”, 3 SWS
Exercise “Channel Coding”, 2 SWS
| **Workload** | Active Time: 90 h
| | Preparation and Evaluation: 150 h
	Sum: 240 h
Assessment	The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration
Grading procedure	The grade of the module will be the grade of the exam.
Basis for	-
Circuit Design in Nanometer-Scaled CMOS Technologies
Modules referring to Special Subjects in Engineering

Code: 8822271726
ECTS credits: 5
Attendance time: 3
Language of instruction: English (german upon verbal agreement)
Duration: 1 Semester
Cycle: each Winter Semester
Coordinator: Prof. Dr.-Ing. Maurits Ortmanns
Instructor(s): Prof. Dr.-Ing. Maurits Ortmanns

Allocation of study programmes:
Electrical Engineering, M.Sc., Elective Module,
Communications Technology, M.Sc., Optional Technical Module, Microelectronics
Information and System Technology, M.Sc., Elective Module

Recommended prerequisites:
Successful participation in the course "Integrated Analog Circuits" or a similar qualification are a course prerequisite.

Learning objectives:
The students are able to explain MOSFET operation in deep submicron technologies including short channel and narrow width effects using charge-based transistor modeling. They can identify situations in which a classical square-law based design approach is prone to fail and apply non-square law based design methodologies to synthesize circuits even under these conditions. The students can predict the effects of mismatch and process variations on the performance of integrated circuits and can select operating points to mitigate these effects. Furthermore, they are able to evaluate different layout styles regarding their robustness against mismatch and process variations and select an appropriate layout style for a given application. The students are able to apply advanced linear feedback theory in the form of the Middlebrook and Tian’s method to electronic circuits to predict their stability. The students can analyze advanced single-ended and fully-differential op-amp structures and synthesize these structures for a given performance. The students can explain the need for on-chip references and power management and synthesize on-chip voltage references, current references and voltage regulators. The students can analyze CMOS subcircuits in the presence of noise and distinguish important noise related performance metrics. The students are able to identify main ideas of state-of-the-art research articles and present those ideas to their fellow students.
Syllabus
- MOSFET operation and modern CMOS devices
- MOS device models
- Analog Design Styles in deep submicron technologies
- Feedback theory and closed loop feedback simulation
- Advanced differential amplifiers
- References and Power Management
- Analog filters
- Advanced A/D Converter Concepts

Literature

Teaching and learning methods
Lecture "Circuit Design in Nanometer-Scaled CMOS Technologies", 2 SWS
Recitation "Circuit Design in Nanometer-Scaled CMOS Technologies", 1 SWS

Workload
Lecture: 28 h
Lecture preparation and review: 28 h
Recitation: 14h
Recitation preparation and review: 32h
Exam preparation and exam participation: 48 h
Total: 150 h

Assessment
The grade of the module will be the grade of the oral or written exam. No prerequisites are necessary for exam registration.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
Master-Thesis
Communication Systems
Modules referring to Special Subjects in Engineering

Code 8822270434
ECTS credits 4
Attendance time 3
Language of instruction English
Duration 1 Semester
Cycle each Summer Semester
Coordinator Prof. Dr.-Ing. Martin Bossert
Instructor(s) Dr. Werner Teich

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Communications Technology, M.Sc., Optional Technical Module, Communications Engineering
Embedded Systems, M.Sc., Application Subject, Communication

Recommended prerequisites Bachelor

Learning objectives
Understanding the
- characteristics of the mobile radio channel and related transmission techniques,
- network and protocol architecture, basic protocol procedures, physical layer, performance as well as network planning of mobile radio systems
- principles of OFDM based broadband systems.

Syllabus Communication systems play a major role in the modern society. Since the 1990ies especially wireless communications is of increasing interest worldwide. For the definition of such systems lots of aspects need to be taken into Consideration. Among others frequency band allocation, efficient use of radio and network resources, number of sites required to provide radio coverage, targeted user service characteristics like maximum bit rate and quality and last but not
least cost of implementation. After a short presentation of the wireless communications
history the characteristics of the terrestrial mobile radio channel are introduced followed by an overview of basic transmission techniques over such channels. The second part deals with the TDMA based GSM standard. The role of the network elements being part of the overall network architecture and the services available to the users are introduced. Mobility and security aspects, protocol architecture, signalling procedures are further topics. Lower layer specification and related performance which form the basis for cell planning are discussed in detail. In the third part the UMTS standard which is based on WCDMA is explained. The presentation follows a similar structure as compared to the GSM presentation which allows comparison of both systems. OFDM is the next topic and it will become evident why it is of special interest in the case of broadband transmission over dispersive multipath channels. Finally a brief look to market figures concludes the course, thereby demonstrating the huge potential behind the mobile radio market.

Literature
- Walke: Mobile Radio Networks, John Wiley & Sons, 1999
- Bossert: Channel Coding for Telecommunications, John Wiley & Sons, 1999
- 3GPP Recommendations, http://www.3gpp.org/specs/numbering.htm
- 3GPP Recommendations for UMTS Long Term Evolution (Evolved UTRA aspects), http://www.3gpp.org/ftp/Specs/html-info/36-series.htm
- CPRI (Common Public Radio Interface), http://www.cpri.info

Teaching and learning methods
Lecture “Communication Systems”, 2 SWS
Exercise “Communication Systems”, 1 SWS

Workload
Active Time: 36 h
Preparation and Evaluation: 46 h
Self-Study: 38 h
Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration.

Grading procedure
The grade of the module will be the grade of the exam. A grade bonus according to § 17 (3a) of the study and exam framework regulations is given if the exercise class is passed successfully.

Basis for
-
Computer Networks
Modules referring to Special Subjects in Engineering

Code 8822272459

ECTS credits 4

Attendance time 3

Language of instruction english

Duration 1 Semester

Cycle each Winter Semester

Coordinator Prof. Dr.-Ing. Stefan Wesner

Instructor(s) Dr. Jörg Domaschka
Prof. Dr.-Ing. Stefan Wesner

Allocation of study programmes
- Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
- Communications Technology, M.Sc., Optional Technical Module, Communications Engineering

Recommended prerequisites Basic comprehension of electrical engineering and information technology.

Learning objectives After completing the lecture students will be able to name and describe the major network protocols and technologies for building local and wide area networks. They will be able to explain the fundamental architectural principles in networks, such as the ISO/OSI model and the Internet protocol stack. Students will understand the challenges on each protocol layer and will be able to explain how the covered protocols in the lecture address them. Students participating in this lecture will be able to compare the different protocols as well to understand and explain their limitations. Participants of this lecture can name the different network topologies for data centre networks, describe the different protocols for interconnects or storage networks and are able to assess and select appropriate

Syllabus The lecture “Computer Networks” is an introduction to networks used with today’s computers. It deals mostly with the construction, the functionality and the design of local networks and protocols. On the basis of the ISO/OSI Model as a commonly used layered reference model, network and computer protocols are discussed. Media Access Control protocols of the lower layer are discussed together with network topologies with respect to their medium access mechanism. Topics of discussion include classic technologies like Ethernet as well as technologies used
by internet service providers. On OSI Layer 3 and 4 (network and transport layer),
the commonly encountered TCP/IP protocol is introduced and covered in detail.
This builds the basis for discussing a set of application protocols based on TCP/IP
such as RTP, HTTP or protocol patterns like REST.
The lecture is concluded with a discussion of advanced topics such as Peer-
to-Peer networks, concepts of software defined networking as well as network
function virtualisation, and other specialised and experimental networks or
protocols, e.g. the CAN bus or QUIC.
The Exercise component of the module will help students reflect the content of
the lecture by the provisioning of questions and exercise sheets. In addition, the
exercise will tackle practical aspects such as socket programming and the use of
administrator tools including network sniffer.

Literature

- George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair: Distributed
- Comer, Douglas E.: Internetworking with TCP/IP. Principles, protocols, and
 architecture; London 1988
- Lawrenz, Wolfhard (Hrsg.): CAN - Controller Area Network. Grundlagen und
 Praxis; 2., vollständig überarbeitete und erweiterte Auflage; Heidelberg 1997
- Stevens, W. Richards: TCP/IP Illustrated, Volume 1. The Protocols;
 Reading (Massachusetts) 1994-
- Tannenbaum: Computer Networks; Prentice Hall
- Michel Dubois, Murali Annavaram, Per Stenström: Parallel Computer
 Organization and Design, 2012
- Ulf Troppens, Rainer Erkens, Wolfgang Mueller-Friedt, Rainer Wolafka,
 Nils Haustein: Storage Networks Explained: Basics and Application of Fibre
 Channel

Teaching and learning methods

Lecture “Computer Networks”, 2 SWS
Exercises “Computer Networks”, 1 SWS

Workload

Active Time: 45 h
Preparation and Evaluation: 75 h
Sum: 120 h

Assessment

The credit points will be awarded once the written or oral exam has been
passed (depending on the number of participants). The type of examination
will be announced in time - at least 4 weeks prior to the date of the exam. No
prerequisites are necessary for exam registration.

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Compressed Sensing
Modules referring to Special Subjects in Engineering

Code 8822271472

ECTS credits 5

Attendance time 3

Language of instruction English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Dr. Dejan Lazich

Instructor(s) Dr. Dejan Lazich

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering
Communications and Computer Engineering, M.Sc., Optional Module, Communications Technology, M.Sc., Optional Module, Computer Science and Media, M.Sc., Optional Module

Recommended prerequisites
Electrical engineering/computer science:
Basic knowledge in signal processing and system theory

Mathematics:
Basic knowledge of linear algebra, probability and statistics

Learning objectives
By attending this course, the students are enabled to present a new, demanding and promising field of information processing, in an easy understandable way. At the end of the course the students will be able to analyze and discuss the underlying concept of compressed sensing based on solving underdetermined systems of linear equations. Likewise, they will be able to implement the main data recovery algorithms and to compare them according to various criteria. By the course, the students are enabled to interpret complex optimization approaches using the geometry of higher dimensions. In this way the students will be continuously motivated and supported to build their own approaches to the mater which may trigger new ideas for improvements. In addition, a variety of implementations of compressed sen-sing can be explained by the students and new application areas can be identified and discussed. Students will be enabled
to deal with the very subject-specific literature and to classify this in the proper context.

Syllabus

This course will discuss the theoretical, numerical, and practical foundations of *Compressed Sensing* (CS) which has become a very important concept in recent years in information and signal processing. It allowed an alternative approach to conventional techniques for acquiring and reconstructing sensor input signals. CS is also known as *Compressive Sampling* because it allows sampling of compressible analog signals with sampling rates well below the Nyquist rate. This analog setting of CS allows significant performance improvements of analog-to-digital converters for a broad class of time continuous signals. It is therefore possible to design universal CS based data acquisition systems with compressive sensors for analog and digital sensor input signals, even if these signals are noisy.

The compressibility of certain signals can be exploited by developing novel CS methods which, in comparison to traditional approaches like the transform coding, involve far less processing effort for data compression. On the other hand, CS requires far more effort in order to reconstruct a sensor input signal. Accordingly, CS can help to resolve data deluge in complex sensing networks, where the number and resolution of the sensors grow to a point where the performance bottleneck moves to data processing in sensors. To avoid this raw data accumulation, new designs of data acquisition systems are proposed. They combine sensing and compression in one simple operation, replacing conventional sensors with compressive sensors. Instead of acquiring a massive amount of raw data and extracting the information afterwards, compressive sensors attempt to acquire the information directly.

Data compression using CS is performed by means of a simple linear superposition, while the decompression is based on optimization algorithms for finding the unique sparsest solution of an underdetermined system of linear equations. There are multiple approaches for solving this optimization problem, e.g. the generic *Basis Pursuit* algorithm. This fundamental CS de-compression method is based on an optimization with respect to the L1-norm.

The principles of compressed sensing are difficult to comprehend from the available literature without prior special knowledge, since they encompass specific aspects and languages of many mathematical fields. The most relevant subjects to CS are high-dimensional geometries of Euclidean and Banach spaces, random matrices, information and approximation theory, linear and convex programming, harmonic analysis, and combinatorics.

This highly challenging abstract approach to compressed sensing will be in these lectures replaced by a simpler, expressive and application-oriented approach easy understandable for engineers. The underlying principle of this new research field will be systematically explained. The lectures and exercises will illuminate the basic principles of CS using the elementary language of signal processing, linear algebra and geometry only.

The main topics of the course include:

- Big data research and development
- Signal representation using bases and frames
- Traditional and generalized sampling of analog signals
- Overview of sparse recovery - discrete and analog setting
 - Recap of the necessary concepts from linear algebra
 - Sparsity and measurement basis and frames (dictionaries)
- Sensing matrices and recovery equations
- Geometric interpretation of linear systems of equations
• Some terms of functional analysis and inner product spaces
• Basics of multidimensional Euclidean geometry
• Linear and affine subspaces, convex polytopes
• Arrangements of hyperplanes
• Configurations of sparse solutions
• Robustness of CS
• Recap of linear optimization methods
• Types of reconstruction algorithms in CS
• L1-minimization
• Basic pursuit
• Orthogonal matching pursuit
• Theoretical limits of CS
• Mutual incoherence property
• Null space property
• Random matrices and the restricted isometry property
• Stochastic geometry, the polytope model and face survival
• Weak and strong phase transitions
• Sensing matrix design, deterministic sensing matrices
• CS using antipodal best spherical codes
• CS for A/D converters and other RF applications
 • Application of CS to image processing and to medical imaging
 • Application of CS to channel coding and cryptography
 • Application of CS to radar technology
 • Application of CS to genetics: DNA-micro-arrays and DNA-sequencing
• CS in femto photography
• Perspectives of compressed sensing

Literature

There is no introductory textbook yet, nor a detailed tutorial on compressed sensing. Therefore, the lectures and exercises are completely accompanied with detailed slides available as downloads on the web-site of this course. Additional teaching materials and supplementing reading material are also placed on the course web-site. This webpage will provide general course information, resources (links to books, papers, presentations and tutorials) that augment the lectures, as well as homework assignments and creative exercises.

As a basic literature, the Chapter 1 from the following book is recommended:

Y. Eldar, G. Kutyniok (Editors): „Compressed Sensing“, Cambridge Univ. Press 2012, Chapter 1: M. A. Davenport, M. F. Duarte, Y. Eldar, G. Kutyniok: *Introduction to Compressed Sensing*. It is online available on:

or on

A similar text to the above with some more details is

R. Baraniuk, M. A. Davenport, M. F. Duarte, C. Hegde: „An Introduction to Compressive Sensing“, online available on: http://cnx.org/content/col11133/latest/

As a literature for advanced readings, the following review paper is recommended:

An extensive list of scientific contributions and other literature from the field of
compressed sensing is on the website at Rice University: http://dsp.rice.edu.
Further resources can be found on: The Nuit Blanche Blog http://nuit-
blanche.blogspot.de

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Lectures "Compressed Sensing", 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise "Compressed Sensing", 1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>Lecture: Attendance: 30 h, direct follow-up: 35 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercise: Presence: 15 hours, direct follow-up: 25 hours</td>
</tr>
<tr>
<td></td>
<td>Lecture follow-up as exam preparation and attendance during exam 45 h, total: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
<th>The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
<th>The grade of the module will be the grade of the exam.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
<th>Master Thesis</th>
</tr>
</thead>
</table>
Compound Semiconductors (Verbindungshalbleiter)
Modules referring to Special Subjects in Engineering

Code 8822270461
ECTS credits 6
Attendance time 4
Language of instruction English
Duration 1 Semester
Cycle each Summer Semester
Coordinator Prof. Dr. Ferdinand Scholz
Instructor(s) Prof. Dr. Ferdinand Scholz

Allocation of study programmes

Recommended prerequisites

Learning objectives
After successfully having finished the module, the students are able to describe the basic physics of compound semiconductors and contrast them to those of elemental semiconductors. They are able to describe important characteristics like band gap, lattice constant or refractive index and identify their systematic trends. They are able to derive from those basics the application possibilities of compound semiconductors and discuss their advantages and disadvantages. They are able to describe and compare the most important fabrication and characterization methods. They are able to describe the constitution of the most important basic hetero structures and explain their mode of operation. Based on that, they are able to develop the structure of important representative devices like light emitting diodes or laser diodes and to describe in detail the function of the respective structural details.

Syllabus
- Basics of Semiconductors, Compound Semiconductors
- Bulk crystal growth, liquid phase epitaxy, vapor phase epitaxy, molecular beam epitaxy
- Optical processes, spectroscopic methods
- Electrical characterisation methods
- X-ray diffraction, microscopy methods, other characterisation methods
- Strain in semiconductor structures
- Low-dimensional structures: quantum wells, wires, dots
- Semiconductor Light emitters and Laser Diodes
- Short Wavelength materials: Group III nitrides
- Electronic devices: HEMTs, HBTs
- Solar Cells

Literature
- Skript to lecture
- O. Madelung, Grundlagen der Halbleiterphysik, Springer
- S.M. Sze, Physics of Semiconductor Devices, John Wiley
- E. Rosencher, B. Vinter, Optoelectronics, Cambridge University Press 2002
- K.J. Ebeling; Integrated optoelectronics : waveguide optics, photonics, semiconductors
 Berlin ; Heidelberg [u.a.] : Springer, 1993

Teaching and learning methods
Lecture “Compound Semiconductors”, 3 SWS
Exercise “Compound Semiconductors”, 1 SWS

Workload
Preparation and Evaluation: 56 h
Active Time: 74 h
Self-Study: 50 h
Sum: 180 h

Assessment
The award of the credit points for this ungraded module is based on completion of an assignment (presentation and optionally paper) and active participation in discussions. The required parts will be announced in time. No prerequisites are necessary for the registration.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
-
Cross - Organizational Distributed Systems and Clouds
Modules referring to Special Subjects in Engineering

Code 8822272092

ECTS credits 6

Attendance time 4

Language of instruction english

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Stefan Wesner

Instructor(s) Prof. Dr.-Ing. Stefan Wesner

Allocation of study programmes
Electrical Engineering, M.Sc., Optional Module, Engineering Sciences
Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
Communications and Computer Engineering, M.Sc., Recommended Optional Module,
Communications Technology, M.Sc., Optional Technical Module

Recommended prerequisites Basic knowledge of distributed systems and/or communication networks

Learning objectives
After this course students will have an in-depth understanding of cross-organisational and cloud-based systems and an overview over the state of the art. They will be able to name and describe the architectural principles from Infrastructure over Platform up to Software as a Service concepts. Students will have an understanding of the different cloud software stacks and solutions, and will be able to assess their advantages and limitations. Additionally, they will understand the challenges and solution approaches to deliver Cloud-based services not only from a consumer’s, but also from a data centre operator’s perspective. They will also learn how Service Level Agreements help in meeting business requirements. The students will be able to differentiate between cloud solutions and local systems and assess them from an economic viewpoint. At the end of the course, the students will have an understanding of the challenges addressed by current research projects.

Syllabus
In the first part of this course, the basics and specific challenges of cross-organisational distributed systems will be discussed. Starting from approaches such as Metacomputing, Grid Computing and virtualisation technologies, the concepts behind Clouds will be introduced. The different layers of Cloud
provisioning (XaaS) will be explained in the context of current Cloud-based solutions. It will be explained how the concept of Service Level Agreements affect Cloud service hosting and delivery, in particular in terms of performance and cost. The impact on networks and the relationship to Network Function Virtualization and Software Defined Networking will be discussed. The course will conclude with selected themes from “Future Clouds” and current research and development efforts in academia and industry. Lectures will be amended with guest speakers from collaborating institutions from academia and industry, where appropriate.

Literature

- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms
- Nicholas Carr, The Big Switch: Rewiring the World, from Edison to Google
- Dimitrakos, Martrat, Wesner, Service Oriented Infrastructures and Cloud Service Platforms for the Enterprise: A selection of common capabilities validated in real-life business trials by the BEinGRID consortium
- Bill Wilder, Cloud Architecture Patterns: Using Microsoft Azure

Teaching and learning methods

- Lecture “Cross-organizational distributed systems and Clouds”, 2 SWS
- Exercise “Cross-organizational distributed systems and Clouds”, 1 SWS
- Seminar “Cross-organizational distributed systems and Clouds”, 1 SWS

Workload

- Active Time: 60 h
- Preparation and Evaluation: 40 h
- Self-Study: 80 h
- Sum: 180 h

Assessment

The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

Master’s Thesis
Data Centre Networks Architecture and Protocols
Modules referring to Special Subjects in Engineering

Code: 8822272498
ECTS credits: 6
Attendance time: 4
Language of instruction: English
Duration: 1 Semester
Cycle: each Summer Semester
Coordinator: Prof. Dr.-Ing. Stefan Wesner
Instructor(s): Prof. Dr.-Ing. Stefan Wesner

Allocation of study programmes:
Electrical Engineering, M.Sc., Optional
Communications Technology, M.Sc., Elective

Recommended prerequisites:
Basic knowledge of distributed systems and/or communication networks

Learning objectives:
After this course students will have an extended understanding of network architecture and protocols with a focus on the specific challenges, approaches and technologies, products of storage and data-centre networks.

In order to achieve this the deployed protocols and topologies in the field of storage networks (e.g. iSCSI, SAN, NAS, iSER) and for the realization of large computing facilities and data centers (e.g. Infiniband, Data Centre TCP) are covered. Furthermore the basic design principles and architectures for large scale data centers, the available technologies and procedures (e.g. benchmarking, performance and power efficiency indicators, ...) to optimize such architectures are covered. This covers approaches to achieve low latency and high speed network components as well as emerging technologies such as Software Defined Networking (SDN).

The primary teaching goals are to allow course participants to name and describe the technologies and protocols used for low latency and high performance applications such as data centers. Participants will understand the pros and cons of different approaches and learn how to evaluate their applicability in different context and examples. The participants will learn to apply these technologies and background knowledge to design data centre networks and architectures for different applications (e.g. Big Data Analytics, Scientific Computing, Server Farming, Cloud Computing, ...).
As background material mostly protocol specifications and primary literature and publications are used.

The exams repeat the topics from the lecture with a more practical viewpoint and validate the knowledge based on exercises. The exercises will enable the participants to solve smaller design challenges for storage networks and will evolve over the course up to design of complete data centre systems using the technology introduced in the course for different application domains. The seminar allows participants to experiment with technology and to realize specific set-ups applying the knowledge.

Syllabus

The area of data centre and storage networks is characterized by a large focus on optimization for high speed and bandwidth as well as extreme requirements for low latencies. In particular for very large data centers in the field of Big Data analytics, scientific computing/simulation or server farming these requirements combined with the boundary conditions of cost optimizations and performance/cost balance are very challenging. The design of such systems does not only demand for selecting the most appropriate protocols but similarly asks for creative solutions combining them in order to achieve a balanced solution between performance and costs.

In this course mature and emerging technologies in the field of high performance and data centre networks are presented. The capabilities of the different technologies will be discussed along specific use cases e.g. for realizing high performance parallel filesystems, data centers to support large scale data analytics or compute intensive simulation applications from different fields such as automotive or chemistry.

Literature

- Troppens, Ulf: Storage networks explained: basics and application of Fibre Channel SAN, NAS, iSCSI, InfiniBand and FCoE, 2009
- Dally, W.: Principles and Practices of Interconnection Networks. (Morgan Kaufmann Series in Computer Architecture and Design)
- Kim, J.; Dally, W.; Scott, S.; Abts, D. Cost-Efficient Dragonfly Topology for Large-Scale Systems
- Peter Kogge et. al. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems-Selected Publications and specifications of the protocols

Teaching and learning methods

Data Centre Network Architecture and Protocols (L), 2 SWS
Data Centre Network Architecture and Protocols (E), 1 SWS,
Data Centre Network Architecture and Protocols (S), 1 SWS

Workload

Active Time: 60 h
Preparation and Evaluation: 40 h
Self-Study: 80 h
Sum: 180h

Assessment

The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration.
<table>
<thead>
<tr>
<th>Grading procedure</th>
<th>The grade of the module will be the grade of the exam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis for</td>
<td>Master Thesis</td>
</tr>
</tbody>
</table>
Electronic System Design using C and SystemC

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822270436</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr. Endric Schubert</td>
</tr>
</tbody>
</table>

Allocation of study programmes

| Electrical Engineering, M.Sc., Elective Module, Engineering Sciences |
| Electrical Engineering, M.Sc., Elective Module, Communication and System Technology |
| Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology |
| Communications and Computer Engineering, M.Sc., Elective Module, (Ing) |

Recommended prerequisites

Bachelor

Learning objectives

In today’s world of short product cycles the design of electronic systems demands concurrent design of the hardware and software components. IEEE 1666 SystemC has evolved as the de-facto industry standard for modeling and validating hardware and software components of electronic systems. SystemC builds upon the powerful ANSI/ISO C++ computer software language and adds means for modeling concurrency (parallelism), communication mechanisms, reactivity for synchronizing concurrent processing, and a concept of time. Thus SystemC can be seen as a C++ class library plus an event-based simulation kernel. Students will learn the elements of the ANSI/ISO programming languages C and C++. Their knowledge and understanding of the syntax, semantics and programming principles is applied to practical programming examples. Students reproduce modern techniques of generic programming using C++ templates and C++ class inheritance. Students will analyze electronic system level designs based on the IEEE 1666 SystemC language and the corresponding methodologies. This includes the design and validation of electronic systems by modeling.
time, concurrency (parallelism), reactivity, and communication. They apply these concepts by modifying and/or writing practical code examples. Students can identify state-of-the-art Models of Computation, and can distinguish between modeling concepts such as Untimed Functional Models (UFM), Timed Functional Models (TFM), Transaction-Level Modeling (TLM). Students will gain insight into the underlying event-driven OSCI simulation kernel and, thereby, can apply methodologies for trading-off between accuracy, programming effort and simulation speed.

Syllabus

In today’s world of short product cycles the design of electronic systems demands concurrent design of the hardware and software components. Over a very short time period SystemC has evolved as the de-facto industry standard for modeling and validating hardware and software components of electronic systems. SystemC builds upon the powerful ANSI C++ computer software language and adds means for modeling concurrency (parallelism), communication mechanisms, reactivity for synchronizing concurrent processing, and a concept of time. Thus SystemC can be seen as a C++ class library plus an event-based simulation kernel. After a refresher of the syntax of ANSI C++ and principles of object-oriented programming, the syntax of SystemC is introduced. Models of Computation are presented that are commonly used to model at various levels of abstraction: Register-Transfer Level, Behavioral Level, Transaction Level, etc. SystemC models may differ in their accuracy in certain aspects: Pin-level accuracy, timing accuracy, structural accuracy, functional accuracy, communication accuracy. The student will learn methods for trading-off fast development of a SystemC model vs. accuracy and simulation speed. Methods for refining models to gain more accuracy in certain areas are show, together with formal processes that have proven to be efficient. To complement the class many examples of SystemC code will be shown during the lectures. Hands-on exercises will take those examples to the next level of understanding and will enable the student to develop, compile and debug own SystemC models.

Literature
- Ellis, Stroustrup, "The Annotated C++ Reference , Addison-Wesley
- The manual pages for GNU gcc, GNU make, GNU gdb at www.gnu.org
- The SystemC Language Reference Manual (LRM) from the Open SystemC Initiative at www.osci.org

Teaching and learning methods
Lecture "Electronic System Design using C and SystemC", 2 SWS
Exercise “Electronic System Design using C and SystemC“, 2 SWS

Workload
Lecture: participation: 28 h, wrap-up: 40 h;
Exercises: participation: 28 h; wrap-up: 40 h;
Exam preparation: 44 h;
Total: 180 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration
<table>
<thead>
<tr>
<th>Grading procedure</th>
<th>The grade of the module will be the grade of the exam.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis for</td>
<td>-</td>
</tr>
</tbody>
</table>
Embedded Security

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8804871450</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German/English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Dr. Dejan Lazich</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr. Dejan Lazich</td>
</tr>
</tbody>
</table>

Allocation of study programmes

- Master Electrical Engineering (MSc ET)
- Master Communication Technology (MSc CT)
- Master Information System Technology (MSc IST)
- Master Computer Science, M.Sc., Core Subject: Technical and system-oriented computer science
- Master Computer Science, M.Sc., Specialization Subject: IT-security
- Master Media Computer Science, M.Sc., Core Subject: Technical and system-oriented computer science
- Master Media Computer Science, M.Sc., Specialization Subject: IT-security

Recommended prerequisites

It is advantageous when attendees have basic knowledge in the following topics:

Electrical engineering:

- Signal processing and microcontrollers

Mathematics:

- Probability theory and statistics

Computer Science:

- Cryptography
Learning objectives

At the conclusion of this course, students are expected to be able to choose and apply cryptographic algorithms and protocols suitable for embedded systems. Implementation aspects of security-critical functional units in embedded systems should be distinguished and analyzed. Known vulnerabilities and attack methods can be systematically classified and assessed. The students will be able to select and evaluate effective countermeasures for the most used attack methods. Exemplary analysis of information security in different types of embedded systems should be validated and comprehensively interpreted. The students will be able to evaluate all known security-critical components of embedded systems and prepare them for security certification.

Syllabus

Embedded systems are information processing systems with fixed functionality, which are incorporated in larger technical systems. They work, largely invisible to the user, in a variety of everyday applications. The course Embedded Security (ES) is concerned with the information security in embedded systems through application of technical methods to prevent unauthorized tampering at sourcing, transmission, processing and storage of information. The use of cryptographic algorithms and protocols is a prerequisite for the use of these methods.

Just thirty years ago the civilian use of cryptography was predominantly confined to the banking systems and communication between government agencies. Today, by the advent of networked embedded systems, the use of cryptography is in a much larger number of applications necessary, as in the industrial production (e.g. Industry 4.0), automotive (e.g. automated driving), logistics and energy supply (e.g. supply chain management and smart grid systems), medical technology (e.g. telemedicine), office equipment, consumer electronics, and so on up to the Internet of Things (IoT). At the same time, significant threats arise by networking embedded systems, which enables unauthorized manipulations and thus lead to considerable security risks. Due to the easy accessibility of embedded systems, their usually time-critical components, limited resources and competitive prices, these risks are becoming ever greater. Consequently, there is a considerable need for education, research and development in this field.

There are several technical options for the implementation of cryptographic methods. Currently, these methods are implemented in embedded systems mainly through CMOS integrated circuits (ICs). Since the 1990s, however, it is known that it is not enough that such implementations are only mathematically secure. For example, the power consumption of a processor provides information about the processed security-critical data (e.g. secret keys). This is only one striking example of a whole series of new attack methods (known as side-channel attacks), which use the physical and technical characteristics of the implemented cryptographic systems as a source of compromising information for unauthorized manipulations. Such implementation attacks represent a large group of attacks on cryptographic applications that exploit, instead of the mathematical weaknesses of cryptographic methods or the misconduct of the user, the vulnerabilities of the technical implementation.

In this course, known implementation attacks are systematically classified and explained. For each implementation attack, possible countermeasures will be explained, discussed and evaluated. Some successful implementation attacks will be practically demonstrated with the aid of specially constructed equipment.

Course Topics

- Cryptographic protocols, techniques and algorithms for embedded systems
- Implementation forms of cryptographic algorithms
- Vulnerabilities of implementations
- Types of implementation attacks and corresponding countermeasures
- Side-channel attacks and appropriate countermeasures
• Security architectures of ICs
• Random Number Generators (RNGs) and tests of their randomness
• Physical Unclonable Functions (PUFs)
• Arithmetic modules for cryptographic applications
• Modular arithmetic and arithmetic of elliptic curves
• Montgomery arithmetic
• Storage of security-critical data on ICs
• Protection against unauthorized manipulation of firmware
• Real life- and time-conditions
• Digital Rights Management (DRM) and Copyright
• Examples of security-relevant applications: smart cards, RFID-systems, access and payment systems, pay TV and set top boxes, Electronic Control Units (ECUs) in vehicles and industry, tachometers and tachographs, car infotainment, product piracy
• Evaluation and certification of embedded cryptographic modules
• Research, development and patents in embedded security
• Standards, companies and information sources.

Literature

To this day, a complete introductory textbook on Embedded Security, suitable for practically oriented beginners, is not available. Therefore, the lectures and exercises in this course are accompanied with detailed presentation slides, which are available as downloads on the website of the course.

Selected parts from the following books are recommended as the main course literature:

For further reading the following books are recommended:

Teaching and learning methods

Embedded Security - Informationssicherheit in eingebetteten Systemen (L), 2 SWS
Embedded Security - Informationssicherheit in eingebetteten Systemen (E), 1 SWS

Workload

Lecture: Active time: 30 h, Preparation and Evaluation, Self-study: 43 h,
Exercises: Active time: 14 h, Preparation and Evaluation: 28 h,
Exam preparation: 35 h
Total: 150 h

Assessment

The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration.

Grading procedure

The grade of the module will be the grade of the exam.
Basis for

No english version available yet.
Heterogeneous and Parallel Computing Infrastructures
Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272323</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Stefan Wesner, Lutz Schubert</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>Mastermodul Ingenieurwissenschaften</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Basic knowledge of distributed systems and/or communication networks, as well as computer architecture is desirable. Some programming knowledge in structured or object oriented programming languages is required for performing the exercises. Participation in the lectures Computer Networks and/or Cross-organizational distributed systems and Clouds or the Lab on Information Technology is desirable but no formal pre-condition.</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>After this course students will have an in-depth understanding of processor architectures and their differences in modern heterogeneous computing platforms. They will understand the impact of processor and system architecture on application performance and will know how this affects programming of such systems. They will be able to explain the benefits and drawbacks of specialisation, parallelisation and data locality, and can give examples of how and when to exploit these factors. They will understand the limitations of scalability based on communication costs and lack of parallelism/ amount of serial code and can interpret and explain scalability and speed-up diagrams for parallel applications. Participants will be able to argue where processor and system development is heading to, why and which problems will arise from this.</td>
</tr>
<tr>
<td>Syllabus</td>
<td>The course will start from an overview over current processor systems and development trends in computer hardware towards increased heterogeneity and specialisation, driven by the need for more computer performance and increased</td>
</tr>
</tbody>
</table>
energy efficiency. The first section of the course will provide a base knowledge of processor architecture from a performance perspective.

In a second section, the principles of parallelisation will be elaborated on all levels, from large scale computing systems, such as high performance computing and clouds, down to multi- and many-core processors. This covers the principles of parallel programming and programming models, such as OpenMP, MPI and Partitioned Global Address Space (PGAS). This will also cover their limitations, such as Amdahl's law and the impact of data locality.

The third section will address specialisation of systems, ranging from embedded devices and multi-core systems to specialised co-processors, such as GPUs. The impact of specialisation on performance and energy efficiency, but also on programmability and portability will be elaborated. The future trends towards completely heterogeneous setups on all levels will be examined and assessed.

The lecture will conclude with an outlook on how processors will likely develop in the future and what this means for the programmability and portability of software.

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogeneous and Parallel computing Infrastructures (V), 2 SWS</td>
</tr>
<tr>
<td>Heterogeneous and Parallel computing Infrastructures (S), 2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Time: 60 h</td>
</tr>
<tr>
<td>Preparation and Evaluation: 40 h</td>
</tr>
<tr>
<td>Self-Study: 80 h</td>
</tr>
<tr>
<td>Sum: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The grade of the module will be the grade of the exam.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
</tr>
</tbody>
</table>
Integrated Microwave Systems
Modules referring to Special Subjects in Engineering

Code: 8822272215
ECTS credits: 4
Attendance time: 3
Language of instruction: English
Duration: 1 Semester
Cycle: each Summer Semester
Coordinator: Prof. Dr.-Ing. Christian Waldschmidt
Instructor(s): Prof. Dr.-Ing. Christian Waldschmidt
Prof. Dr.-Ing. Christian Damm
Dr.-Ing. Frank Bögelsack
Dr.-Ing. Tobias Chaloun

Allocation of study programmes:
- Elektrotechnik MSc, Elective Module Ingenieurwissenschaften
- Elektrotechnik MSc, Elective Module in Kommunikations- und Systemtechnik
- Elektrotechnik MSc, Elective Module in Mikroelektronik
- Elektrotechnik MSc, Elective Module in Automatisierungs- und Energietechnik
- Elektrotechnik MSc, Elective Module in Allgemeine Elektrotechnik
- Communications Technology, MSc, Elective Module in Microelectronics
- Communications Technology, MSc, Elective Module in Communications Engineering

Recommended prerequisites:
Knowledge of the content of the lectures "Einführung in die Hochfrequenztechnik" or "Introduction to Microwave Engineering"

Learning objectives:
After successful completion of lecture and exercises, the students are familiar with the basics of planar transmission line techniques. They are capable to design simple planar components and circuits and are able to familiarize themselves quickly with the design of more complex circuit arrangements. In addition, they know the state-of-the-art interconnect and packaging techniques as well as technologies and methods to fabricate microwave circuits.

Syllabus:
Today, microwave circuits are realized, to a great extent, as planar circuits printed on a dielectric substrate material, in specialized form, even in monolithic form on semiconductor material together with respective semiconductor devices (MIC or MMIC). In its first part, the lecture therefore deals with the
used planar transmission lines. In addition to a general overview, formulas, and computational procedures are presented to calculate the respective transmission line parameters.

As an example for a field theoretical computation method to calculate such parameters, the spectral domain method is presented. To realize complete circuits, quasi-lumped devices, transmission line segments as well as semiconductor devices are necessary which are dealt with in the following sections. Another section presents planar integrated antennas. Finally, two chapters introduce packaging and interconnect techniques and fabrication methods for (hybrid) integrated planar circuits. In the exercises, the knowledge of this lecture is deepened, and the application of the methods is practiced. This includes some circuit design which is done with a CAD system at a computer these circuits finally are realized and tested experimentally.

Literature
- Lecture handout
- Text books: references to text books are provided in the lecture handouts

Teaching and learning methods
Lecture “Integrated Microwave Systems”, 2 SWS
Exercise “Integrated Microwave Systems”, 1 SWS

Workload
Active Time: 45 h
Preparation and Evaluation: 30 h
Self Study: 45 h
Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
-
Integrated Interface Circuits

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272274</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English (Deutsch nur nach vorheriger Abstimmung mit den Studierenden)</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing Maurits Ortmanns</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing Maurits Ortmanns</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Successful participation in the course "Integrated Analog Circuits" or a similar qualification are recommended for a successful course participation.</td>
</tr>
</tbody>
</table>

Learning objectives

The students can identify the most relevant noise sources in sensors and sensor readout electronics and predict their effect on the achievable signal noise ratios. They can distinguish various sensor and transducer principles and apply appropriate readout electronic circuits. The students can differentiate open-loop and closed-loop readout concepts and apply concepts for offset and noise-reduction.

The students analyze and compare different A/D and D/A converter structures concerning their achievable specifications. The students can explain the concept of discrete-time and continuous-time noise-shaping Sigma-delta ADCs and of charge redistribution SAR ADC, as well as the concept of time-to-digital conversion.

The students are able to distinguish various biosignals and give an overview of implantable system requirements. The students can analyze circuit architectures for biosignal recording and neurostimulation circuits. The students identify the problems associated with residual stimulation charge and apply various methods for charge balancing.
The students analyze a research paper in the field of integrated interface circuits and give a presentation on the same.

Syllabus

1. Motivation and example sensor Applications
2. Sensors and Sensor Interface Circuits
 a. Noise in sensor interface circuits
 b. Transducers
 c. Bandgap references and integrated temperature sensors
 d. Resistive and inductive readouts circuits
 e. Capacitive readouts circuits, open and closed loop concepts, force feedback
 f. Autozeroing, Chopping, Correlated Double Sampling
3. Analog/Digital Interfaces
 a. Quantization and Sampling
 b. Spectral Metrics
 c. DAC overview
 d. Nyquist and oversampling DACs
 e. ADC overview
 f. Comparators
 g. SAR ADC
 h. Oversampling (Sigma-Delta) ADC
 i. Time-to-digital converters
4. Biomedical Interface Circuits
 a. Excitable cells and biosignals
 b. Overview on microelectrodes, biocompatibility, packaging
 c. Telemetry and inductive powering
 d. Neural recording, stimulation and modulation circuits and systems
 e. Charge Balancing Strategies
 f. Applications: Cardiac devices, Neuromuscular simulators, Gastrointestinal devices and obesity treatment, Drug delivery devices and infusion pumps, Diabetes treatment, Rehabilitation Engineering
 g. Examples for implantable biosensors

Literature

Teaching and learning methods
Integrated Interface Circuits (L), 3 SWS
Integrated Interface Circuits (S), 1 SWS

Workload
Lecture: Attendance: 42 h
Lecture review: 28 h
Seminar preparation: 16 h
Preparation of the oral presentation and written documentation: 44h
Exam preparation and exam participation: 50 h
Total: 180 h

Assessment
Attendance of the lecture and the seminar (block seminar at the end of the term). Assessment will normally be in the form of an oral exam, or otherwise a written exam of 90 minutes duration. Successful participation in the seminar (seminar attendance certificate) is a requirement for admission to the exam.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
Master-Thesis
Iterative Methods for Wireless Communications
Modules referring to Special Subjects in Engineering

Code 882271150

ECTS credits 4

Attendance time 3

Language of instruction English

Duration 1 Semester

Cycle each Winter Semester

Coordinator Dr. Werner Teich

Instructor(s) Dr. Werner Teich

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Communications and Computer Engineering, M.Sc., Optional Module,
Communications Technology, M.Sc., Optional Technical Module, Communications
Engineering
Electrical Engineering, M.Sc., Optional Module, Communication and System
Technology

Recommended prerequisites No english version available yet.

Learning objectives The students can describe the basic principle of iterative methods, analyze
convergence properties and give examples for the main areas of application. Based on the
fix-point equation they are able to graphically illustrate and analyze an iterative method. The students can describe and discuss the block
diagram of a vector-valued transmission model. They can design different vector
equalization schemes (maximum-likelihood equalizer, block linear equalizer,
block decision-feedback equalizer, multistage detector, recurrent neural network
based equalizer) and they are able to analyze them with respect to performance
and to computational complexity. The students are able to employ the probability
theory for iterative decoding and analyze as well as create the Tanner graph
for a specified linear code. They can discuss the fundamental properties of low-
density parity-check codes and convolutional self-orthogonal codes. They can
illustrate the basic principles of turbo codes and joint de-mapping, equalization,
and decoding (turbo equalization).

Syllabus Iterative methods are motivated by considering two classical examples: Newtons
method to find the roots of nonlinear functions and the Jacobi- and Gauss-Seidel
method to solve large systems of linear equations. Based on these examples
convergence and convergence rates of iterative methods are discussed. The concept of the fix point iteration is used to provide a graphical interpretation of iterative processes. In chapter two the concept of vector-valued transmission is introduced. Based on this, we derive the optimum receiver structure for general linear modulation methods. Besides the optimum vector equalizer also various suboptimum methods (block linear equalizer, block decision feedback equalizer, multistage detector) are discussed. Furthermore iterative equalizer are introduced and the relation to recurrent neural networks is described. Chapter three first introduces the basic concepts for iterative decoding: maximum a posteriori decoding, probability theory for iterative decoding and Tanner graphs as a means to graphically represent iterative decoding. As applications we consider low-density parity-check codes and convolutional self-orthogonal codes. In chapter four iterative methods for concatenated systems are considered. This includes a discussion of classical turbo codes as well as receiver concepts based on a joint demapping, equalization and decoding (turbo equalization). As a further example we consider the basic principle of interleave division multiplexing. The iterative methods are analysed using EXIT charts.

Literature

Teaching and learning methods
Lecture “Iterative Methods for Wireless Communications”, 2 SWS
Exercise “Iterative Methods for Wireless Communications”, 1 SWS

Workload
Active Time: 45 h
Preparation and Evaluation: 75 h
Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure
The grade of the module will be the grade of the exam. In case of successful participation in the Matlab project a bonus to the exam mark will be given (exam regulations for the bachelor and master courses in Electrical Engineering (Elektrotechnik) and Computer Systems Engineering (Informationssystemtechnik) resp. of the exam regulations for the master course Communications Technology)

Basis for
-
Mixed-Signal CMOS Chip Design
Modules referring to Special Subjects in Engineering

Code 8822271045

ECTS credits 4

Attendance time 2.5

Language of instruction English (german upon verbal agreement)

Duration 1 Semester

Cycle each Winter Semester

Coordinator Prof. Dr.-Ing. Maurits Ortmanns

Instructor(s) Dr.-Ing. Joachim Becker
Prof. Dr.-Ing. Maurits Ortmanns

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module, Communication and System Technology
Electrical Engineering, M.Sc., Elective Module, Microelectronics
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Communications Technology, M.Sc., Optional Technical Module, Microelectronics
Embedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Recommended prerequisites
Basic knowledge of semiconductor devices, analog circuits, control theory and signal processing

Learning objectives
This lecture goes along with the analog and digital CMOS circuit design lectures offered by the institute of microelectronics. In contrast to these more theoretical lectures on circuit design techniques, this lecture is focused on the implementation issues of application specific integrated circuits (ASICs). After successful pass of this course, students understand the working principles of analog and digital circuit simulation techniques. They are able to set up a node admittance matrix from a given circuit and know the working principles and applications of the three main analog simulation types: DC, AC, and transient. They understand linearization of device models and Newton-Raphson integration for solution of differential equations, update and residue criteria, and equilibrium
points. Furthermore, they understand process variation and device mismatch and their influence on CMOS circuits and are able to use worst case corner modeling and statistical evaluation methods like Monte Carlo analysis for yield optimization and design centering. They can elaborate the difference between cycle-based and event-driven digital simulation techniques, including half-step simulation and time-wheel scheduling. They are able to use setup- and hold-time constraints as well as contamination- and propagation-delays for calculation of slack times in a static timing analysis and can explain the effect of clock skew and jitter on synchronous circuits. They can elaborate how table-based models and circuit-partitioning is able to significantly speed up simulations and enables mixed-signal verification. They can estimate the tradeoff between manual modeling, compiled-model interface, and coupled co-simulation for mixed-mode analyses. They understand synthesis of combinational and synchronous behavioral hardware description into generic gates. Furthermore, they are able to use the stuck-at fault-model and the D-algorithm in order to analyze testability and include boundary-scan Flip-Flops for improved testability. They know principles of placement and routing of standard-cells including min-cut algorithm, maze and channel-routing, and layout compaction, as well as design-rule-check and layout-versus-schematic-check. They are able to build a clock-distribution network and make use of timing aware placement, as well as build a power-grid and apply I/O-cells in order to improve the reliability of digital circuits. Finally, they know various bonding-techniques and printed-circuit-board design practices in order to connect the final ASIC to other chips and measurement equipment. There is a strong emphasis on the computer aided design (CAD) support and algorithms, which are integral part of todays chip implementation. The exercises will be used to give hands-on experience with industry-standart CAD design tools.

Syllabus
- analog simulation
- digital simulation
- mixed-signal and co-simulation
- design for reliability
- design for testability
- CMOS layout, floorplanning, standart-cells
- layout parasitic extraction and verification
- packaging and board design

Literature
- Baker - CMOS : Circuit design, layout, and simulation
- Razavi - Design of Analog CMOS Integrated Circuits
- Allen, Holberg - CMOS Analog Circuit Design
- Sedra, Smith - Microelectronic Circuits

Teaching and learning methods
Lecture “Mixed-Signal CMOS Circuit Design”, 2 SWS
Exercise “Mixed-Signal CMOS Circuit Design”, 0.5 SWS

Workload
Active Time: 38 h
Preparation and Evaluation: 82 h
Sum: 120 h
<table>
<thead>
<tr>
<th>Assessment</th>
<th>No english version available yet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading procedure</td>
<td>No english version available yet.</td>
</tr>
<tr>
<td>Basis for</td>
<td>Elective Modules, Master-Thesis</td>
</tr>
</tbody>
</table>

Multiuser Communications and MIMO Systems
Modules referring to Special Subjects in Engineering

Code 8822271727

ECTS credits 6

Attendance time 4

Language of instruction German or English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Robert Fischer

Instructor(s) Prof. Dr.-Ing. Robert Fischer

Allocation of study programmes Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
Electrical Engineering, M.Sc., Elective Module, Communication and System Technology
Information Systems Technology, M.Sc., Elective Module, (Ing)
Communications Technology, M.Sc., Optional Technical Module, Communications Engineering

Recommended prerequisites Module “Einführung in die Nachrichtentechnik”, “Communications Engineering” und “Signale und Systeme”.

Learning objectives The students will be able to assess, compare, and design digital transmission systems where a number of users/signals are treated jointly. They can distinguish the different performance measures and explain the trade-off between them. Equalization and pre-equalization schemes can be assessed and designed according to pre-described criteria. The role of lattices in the present context can be outlined. Advanced state-of-the-art precoding approaches can be appraised. The information-theoretical foundation of multiuser communications can be described and applied for their evaluation. The role of interference in such schemes can be illustrated.

Syllabus Introduction into the field of multiuser communications and multiple-input/multiple-output systems. Both, practical transmission schemes, as well as fundamental limits from information theory are covered.
- Introduction
- MIMO Communications
- Introduction to Lattices
- Lattice Decoding and the “Sphere Decoder”
- Equalization via Lattice Reduction
- “Writing on Dirty Paper”
- Multiuser Communications
- Advanced Transmitter-Side Techniques
- Interference Channel

Literature

Teaching and learning methods

Lecture “Multiuser Communications and MIMO Systems”, 3 SWS
Exercise “Multiuser Communications and MIMO Systems”, 1 SWS

Workload

Active Time: 60 h
Preparation and Evaluation: 120 h
Sum: 180 h

Assessment

The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Neuronal Networks and Pattern Recognition

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822270439</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Klaus Dietmayer</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr.-Ing. Ulrich Kreßel</td>
</tr>
</tbody>
</table>

Allocation of study programmes
- Electrical Engineering, M.Sc., Elective Module
- Electrical Engineering, M.Sc., Optional Module, Communication and SystemTechnology
- Electrical Engineering, M.Sc., Optional Module, Automation and EnergyTechnology
- Communications Technology, M.Sc., Optional Technical Module, Communications Engineering

Recommended prerequisites
- Basics of Stochastic
- Basics of Linear Algebra
- Basics of Digital Signal Processing

Learning objectives
The students are able to analyze a real world pattern recognition problem, to transform the problem into a schematic processing chain of recognition and to identify the main steps: data acquisition, segmentation, feature extraction, classification and context based interpretation. They know in detail the three basic theories: decision, approximation, and learning theory, and can explain, how these mathematical theories support the engineering approach to pattern recognition. The students also can distinguish between different approaches to function approximation, such as polynomial classifier, multilayer perceptron, and radial basis functions, can apply all of them, select the most appropriate one for a given problem and design (structure) and adapt (parameters) them accordingly. They also know further concepts of classification, such as cluster analysis, normal distribution hypothesis, support vector machine and cascade classifiers, in order to differentiate them from each other and also to argue, where and when to use them. The students know, how to collect data for a pattern recognition task, and...
how to compose, evaluate and compare different approaches. They are able to apply these data bases to real world classification problems.

Syllabus

Processing chain for pattern recognition as data acquisition, segmentation, feature extraction, classification and context based Interpretation, feature definition, classes, learning from examples, generalization, function approximations

Fundamental Theories: Decision Theory, Approximation Theory and Learning Theory

General Algorithms: Bayes Classifier and Least Mean Squares Approach, Polynomial Classifier, Multilayer Perceptron: Multi References Classifiers: Radial Basis Functions, Nearest Neighbor Classifier

Cluster Analysis: K-Means, Vector Quantization, Divisive Clustering Normal Distribution

Literature

Teaching and learning methods

Lecture “Neural Networks and Pattern Classification”, 2 SWS
Exercise “Neural Networks and Pattern Classification”, 1 SWS

Workload

Active Time: 45 h
Preparation and Evaluation: 45 h
Self-Study: 30 h
Sum: 120 h

Assessment

The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Optoelectronic Devices

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272065</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>apl. Prof. Dr.-Ing. habil. Rainer Michalzik</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>apl. Prof. Dr.-Ing. habil. Rainer Michalzik</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, M.Sc., Elective Module</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, M.Sc., Elective Module, Microelectronics</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, M.Sc., Elective Module, Communication and System Technology</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology</td>
<td></td>
</tr>
<tr>
<td>Information Systems Technology, M.Sc., Optional Module</td>
<td></td>
</tr>
<tr>
<td>Communications Technology, M.Sc., Optional Module</td>
<td></td>
</tr>
</tbody>
</table>

Recommended prerequisites

Modules “Optical Communications” or “Einführung in die Optoelektronik”

Learning objectives

The students are able to describe the modal properties of laser diodes in all three spatial directions and can summarize the temperature-related effects. They can distinguish between gain and index guiding and can relate optical near- and far-fields. The students can describe the origin of parasitic frequency modulation and explain the influence of spontaneous emission noise. They can express the motivation and practical implementation of mirror coatings. They are able to design Bragg mirrors for use in edge-emitting distributed feedback (DFB) and distributed Bragg reflector (DBR) laser diodes as well as for vertical-cavity surface-emitting lasers (VCSELs). They can sketch the layer structures of these three laser diode types and select their layout to achieve dynamic single-mode emission. The students can name the mechanisms of wavelength tuning of laser diodes and illustrate suitable device implementations. They are able to discuss the designs and operating principles of various types of photodetectors and to identify strengths and weaknesses for their use in optical communication systems. The students can moreover list and describe physical effects that are employed to realize optical phase and amplitude modulators with high operation bandwidth exceeding that of directly modulated laser diodes. Corresponding devices can
be sketched and their function be explained. The students are able to show how phase modulation is converted into amplitude modulation in a Mach–Zehnder interferometer configuration. They master to employ such devices for the generation of higher-order optical modulation formats.

Syllabus

- Edge-emitting semiconductor lasers: longitudinal multimode, lateral and transverse mode behavior, temperature effects, optical near- and far-fields, frequency modulation, mirror coatings, laser noise, high-power lasers, DBR and DFB lasers for use in telecommunications, tunable laser diodes
- Vertical-cavity surface-emitting lasers (VCSELs): principles and applications
- Photodetectors: PIN-type, avalanche photodiode (APD), metal–semiconductor–metal (MSM), resonant-cavity-enhanced, waveguide-type, high-speed designs
- Optical modulators: physical effects (plasma, electroabsorption (Franz–Keldysh), quantum-confined Stark (QCSE), electro-optic (Pockels)), phase modulators, Mach–Zehnder interferometer (MZI) modulators, absorption modulators, generation of higher-order modulation formats such as quaternary phase shift keying (QPSK) used in modern optical communication systems

Literature

A comprehensive English written manuscript is provided

Teaching and learning methods

Lecture “Optoelectronic Devices”, 3 hours per week

Workload

Preparation and Evaluation: 78 h
Active Time: 42 h
Sum: 120 h

Assessment

The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Propagation and Antennas
Modules referring to Special Subjects in Engineering

Code 8822272474
ECTS credits 5
Attendance time 3
Language of instruction English
Duration 1 Semester
Cycle each Winter Semester
Coordinator Prof. Dr.-Ing. Christian Waldschmidt
Instructor(s) Prof. Dr.-Ing. Christian Waldschmidt
 Dr.-Ing. Frank Bögelsack
 Dr.-Ing. Tobias Chaloun

Allocation of study programmes Electrical Engineering, M.Sc., Elective Module
 Communications Technology, M.Sc., Elective Module

Recommended prerequisites Introduction to Microwave Engineering or Einführung in die Hochfrequenztechnik

Learning objectives After the successful completion of this module, students are able to describe the fundamental properties of commonly used antennas in the spectral domain and can cope with the theoretical construction of an Hertzian dipole. In addition, they are familiar with the basics of linear and planar antenna arrays. They can transfer the newly learned knowledge to design antennas and antenna arrays with respect to given applications for both communications and sensing. Besides the analysis in the frequency domain, they are likewise capable to describe ultra-wide band antennas in the time domain and may deploy, in this regard, the concept of true time delay for beam forming. After the successful completion of the lecture and exercise, the students are also familiar with several antenna measurement techniques in the far field and near field region. They are able to assess the benefits of different measurement setups against one another for a given antenna under test. They can describe the propagation effects of electromagnetic waves influenced by the environment by means of reflection, diffraction, refraction, and scattering. They are capable to formulate the wave propagation characteristics in the atmosphere allowing them to do own system design work.
They are familiar with fundamental effects occurring in multipath, time variant, and frequency-selective channels for communication and sensing applications. In addition, they have basic knowledge of statistical specifications of radio channels and propagation scenarios.

Syllabus
- Linear and planar antenna array, concept of phased array antennas,
- Antenna characteristics in time domain, overview of different ultra-wide band antennas, concept of true time delay for beam forming,
- Antenna measurement techniques and configurations in the far field and near field region, measurement parameters and errors,
- Propagation effects of electromagnetic waves (reflection, diffraction, refraction, and scattering), wave propagation properties in the atmosphere,
- Multipath propagation, time-variant and frequency-selective transmission channels, statistical specifications of radio channels and propagation scenarios.

Literature
- Lecture handout
- Text book: see lecture handout

Teaching and learning methods
Lecture “Propagation and Antennas”, 2 SWS
Exercise “Propagation and Antennas”, 1 SWS

Workload
Active Time: 45 h
Preparation and Evaluation: 30 h
Self-Study: 45 h
Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
This modul is basis for some of the Master Theses offered by the Institute of Microwave Engineering.
Radio- Frequency Power- Amplifier Design

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272075</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Dr.-Ing. Christoph Bromberger</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr.-Ing. Christoph Bromberger</td>
</tr>
</tbody>
</table>

Allocation of study programmes
- Electrical Engineering, M.Sc., Optional Module
- Communications Technology, M.Sc., Optional Module
- Information Systems Technology, M.Sc., Optional Module

Recommended prerequisites
- Bachelor-Level
- Analog Design Skills
- Some understanding of S-parameters is helpful

Learning objectives
After the first half of the lecture, the students identify the requirements from mobile communication systems for power amplifier design. Attendees recognize potential challenges in applying HF measurement equipment and employ techniques to circumvent them. Students differentiate between small- and large-signal operation and examine the respective strengths and limitations of time-domain and of S-parameter methods. They appraise for the real-world limitations to PA design, HF bandwidth and signal bandwidth. After the second half, participants discriminate different efficiency enhancement concepts and apply load modulation amplifier design techniques.

Syllabus
- Data encoding, signal statistics and consequences for power amplifiers
- Measuring power devices
- Small-signal vs. large-signal operation, LF vs. HF behavior
- Matching power devices using measurement and small-signal tools
- Some nasty shortcomings of nice theoretical approaches
- The Doherty amplifier and it’s design
- Outphasing, pre-distortion, feed-forward and switching mode PAs
- In the exercises, students engross in the concepts by applying them with the help of ADS to real-world designs.

Literature
- A script is available in the lecture
- Steve Cripps, RF Power Amplifiers

Teaching and learning methods
- Lecture "Radio-Frequency Power-Amplifier Design", 2SWS
- Exercise "Radio-Frequency Power-Amplifier Design", 1SWS

Workload
- Lectures: 30 h
- Exercises: 10 h
- Self-Study: 20 h
- Homework: 30 h
- Exam Preparation and Evaluation: 30 h
- Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. Prerequisite for exam registration is passing the pre-course (to be defined by the examiner).

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
Master thesis with radio frequency electronics content
Satellite Communications and Navigation
Modules referring to Special Subjects in Engineering

Code 8822270441

ECTS credits 4

Attendance time 3

Language of instruction english

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Uwe-Carsten Fiebig

Instructor(s) Prof. Dr.-Ing. Uwe-Carsten Fiebig

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module
Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering
Information Systems Technology, M.Sc., Optional Module
Communications Technology, M.Sc., Optional Technical Module

Recommended prerequisites Communications Engineering

Learning objectives
The students are able to understand the various types of satellite orbits: from the Earth-satellite geometry the students can determine all parameters which are relevant for satellite communications such as coverage, distance, visibility of the satellite, elevation angle, and Doppler effects. The students get an idea about satellite installation, space conditions, and orbital perturbations and, thus, understand all major differences between satellite communications and terrestrial mobile radio. Link budgets are in the very focus of the lecture. The students are able to calculate complete link budgets for satellite communications for both uplink and downlink, for station-to-station links and also for interplanetary links. The students assess the findings of link budgets; they can design satellite communications systems encompassing transmit power, antenna size, bit rate constraints,
frequency issues, link margins and the like. The students analyse the influence of communication parameters on the link budget and point out the consequences on the system design if the requirements on the communications link are changed. Operational satellite communication systems are treated in the lecture. The students understand their basic concepts and are able to identify their advantages and drawbacks.

The final subject is satellite navigation. The students understand the basic concept of satellite navigation. They can describe the challenges satellite navigation is faced with and apply methods and techniques to cope with this challenges. The students can explain the various components of satellite navigation systems and understand concepts to further improve the performance of such systems.

Syllabus

The lecture treats both communication aspects of modern satellite communications systems and satellite navigation. The topics are: Satellite orbits (Kepler’s laws, Earth-satellite geometry, types of orbits), satellite installation into the target orbit, space conditions, satellite communications payload, modulation and multiple access for satellite communications, adjacent channel interference, intermodulation, satellite channel (frequency bands, atmospheric effects, fade margin design), link budgets (description of all parameters which are required to calculate the signal-to-noise ratio at the receiver; examples of link budgets), mobile satellite communication systems (Iridium, Globalstar) and satellite navigation (principle, navigation equation, error budget, GPS, Galileo)

Literature

- G. Maral and M. Bousquet: Satellite Communications System, Wiley

Teaching and learning methods

Lecture “Satellite Communications”, 2 SWS

Exercise “Satellite Communications”, 1 SWS

Workload

Active Time: 36 h

Preparation and Evaluation: 36 h

Self-Study: 48 h

Sum: 120 h

Assessment

The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

-
Scientific Writing and Publishing

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822274693</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>1</td>
</tr>
<tr>
<td>Attendance time</td>
<td>1</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
</tbody>
</table>

Duration

1 Semester

Cycle

each Winter Semester

Coordinator

Prof. Dr.-Ing. Steffen Strehle

Instructor(s)

Prof. Dr.-Ing. Steffen Strehle

Allocation of study programmes

Mastermodul des Bereichs Ingenieurwissenschaften (ET, IST, CT)

Recommended prerequisites

None

Learning objectives

The students shall be able to write scientifically in a focused and effective manner with respect to a thesis, an abstract as well as research papers. Furthermore, suitable scientific and technical drawings can be created with respect to the purpose of publishing and the readers or the audience.

Syllabus

The course will cover various aspects of scientific writing and publishing such as:

- Kinds of publications, general aspects, style issues
- Plagiarism, ethical aspects, Good-Scientific-Practice
- Abstract writing; How to write a thesis.; How to write a paper.
- Data visualization and technical drawings
- Poster Presentations, scientific talks
- Public outreach

Literature

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Seminar "Scientific Writing and Publishing", 1 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Präsenzzeit: 15 h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 8 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 8 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 30 h</td>
</tr>
<tr>
<td>Assessment</td>
<td>The award of the credit points for this ungraded module is based on regular attendance and completion of an assignment (presentation and paper). No prerequisites are necessary for exam registration.</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>The module is not graded.</td>
</tr>
<tr>
<td>Basis for</td>
<td>None</td>
</tr>
</tbody>
</table>
Semiconductor Sensors
Modules referring to Special Subjects in Engineering

Code 8822270450

ECTS credits 5

Attendance time 3

Language of instruction English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Hermann Schumacher

Instructor(s) Dr. Alberto Pasquarelli

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module
Electrical Engineering, M.Sc., Compulsory Subject Module, Microelectronics
Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
Communications Technology, M.Sc., Optional Technical Module, Microelectronics
Embedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Recommended prerequisites Halbleiterbauelemente

Learning objectives
The advances in microelectronics and micro electro-mechanical systems (MEMS) have revolutionized the scenario of sensor technology. Thanks to new materials and processes, traditional bulky, slow and expensive sensor systems could be replaced by miniaturized and integrated smart sensors based on semiconductors. With the help of semiconductor sensors various application areas have been developed. In everyday life we encounter them, for example, in the form of navigation and control systems in vehicles or as microphones, accelerometers, compass and cameras in mobile phones and tablets. In addition to the automotive industry and the mobile communications, semiconductor sensors are used in many other areas, for example, in health care to record the blood pressure or body temperature in real time.

The students describe and classify principles of operation, technological implementations and application areas of different sensors. They recognize and discuss the various physical phenomena in semiconductors, which are used for the detection of physical quantities and their conversion to electrical signals. They know various semiconductor materials suitable for the production of sensors, analyze the peculiarities of each one, explain and predict their response under different conditions and can calculate sensor examples for different measurement needs. The students can design a semiconductor sensor choosing the right
material among several semiconductors. They are able to analyze a measurement problem, compare appropriate sensing techniques and develop their own solution. Doing this they can properly dimension the sensor unit to meet the design specifications.

Syllabus

Semiconductor-based detection methods for:
- radiation (ionizing and non-ionizing)
- magnetic fields
- mechanical forces
- temperature

Basics on operational amplifiers
Basics on MST (micro system technology)
Basics on MEMS (micro electro-mechanical systems)

Literature

Lecture Notes

For in-depth study, following books (University library) are recommended:
- Pierret: Field effect devices - TK 7871.95/1990 P
- Middelhoek: Silicon sensors - I: T 50/1989 M
- Sze: Semiconductor sensors - T99: T 50/1994 Sc
- Fraden, Jacob - Handbook of modern sensors – I: T 50/1993 F

Teaching and learning methods

Lecture “Semiconductor Sensors”, 3 SWS
Exercise “Semiconductor Sensors”, 1 SWS

Workload

Active Time: 45 h
Preparation and Evaluation: 105 h
Sum: 150 h

Assessment

The grade of the module will be the grade of the written exam. No prerequisites are necessary for exam registration

Grading procedure

The grade of the module will be the grade of the exam.

Basis for

Master thesis in the area of semiconductor sensors.
Signal Theory
Modules referring to Special Subjects in Engineering

Code 8822272272

ECTS credits 6

Attendance time 4

Language of instruction English

Duration 1 Semester

Cycle each Winter Semester

Coordinator Prof. Dr.-Ing. Robert Fischer

Instructor(s) Prof. Dr.-Ing. Robert Fischer

Allocation of study programmes
Elektrotechnik MSc, Kernmodul
Informationssystemtechnik MSc, Kernmodul
Communications Technology MSc, Wahlpflichtmodul

Recommended prerequisites recommended
- signals and systems (discrete and continuous-time signals and systems)
- fundamentals of random variables and random processes (e.g., modul "Signale und Systeme")

Learning objectives
The students will be able to operate with stochastic and deterministic signals. The concept of real and complex-valued stochastic processes and its characteristic quantities can be explained and applied. Spectral representations of processes can be formulated and discriminated. The students will be able to assess and devise mean-square estimators and appraise the fundamental limits. They can explain the characterization and approximation of deterministic signals. The students can operate with the description of signals in a signal space and are able to identify suited bases. Signals with structure can be characterized and categorized. The students can assess and design adequate reconstruction algorithm. The principles of localization and uncertainty can be explained and justified in the time-frequency plane. Adopted transformations can be assessed and discriminated.

Syllabus Part I: Stochastic Signals
* The Concept of Stochastic Processes
 - basic concepts
- characteristic quantities
- complex processes (equivalent baseband signals)
 * Spectral Representation and Spectral Estimation
 - innovations
 - Fourier and Karhunen-Loeve expansion
 - spectral estimation / periodogram
 - parameter estimation
 * Mean-Square Estimation
 - prediction and filtering
 - unbiased estimation
 - Cramer-Rao bound

Part II: Deterministic Signals
 * Approximation of Signals
 - sampling and equivalent sequences
 - series expansion
 - signal spaces and bases
 - signals with structure / low-dimensional bases
 - compressed sensing
 * Localization and Uncertainty
 - time-frequency plane
 - local (short-time) Fourier Spectrum / Wavelets

Literature

Teaching and learning methods
Lecture "Signal Theory", 3 SWS
Exercise "Signal Theory", 1 SWS

Workload
Active Time: 50 h
Preparation and Evaluation: 80 h
Self-Study: 50 h
Sum: 180 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration.
<table>
<thead>
<tr>
<th>Grading procedure</th>
<th>The grade of the module will be the grade of the exam.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
<th>tbd</th>
</tr>
</thead>
</table>
Technology for Micro- and Nanostructures

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822270458</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Winter Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
</tbody>
</table>

Allocation of study programmes

- Electrical Engineering, M.Sc., Elective Module
- Electrical Engineering, M.Sc., Elective Module, Microelectronics
- Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
- Communications Technology, M.Sc., Compulsory Subject Module, Microelectronics

Recommended prerequisites

- Bachelor
- Vordiplom

Learning objectives

The students can describe and explain the different lithography methods like optical, e-beam, and x-ray lithography. For a given lithographic problem, they are able to select a suitable exposure process and to choose a proper resist material. The students understand the physics of low-pressure non-equilibrium gas discharges, can give examples of commonly used process techniques using this type of plasma, and are able to sketch the construction of typical plasma-etching and plasma-deposition systems. The students are able to explain the physics of dry-etching and vacuum deposition processes used in semiconductor and thin-film technology.

Syllabus

At the beginning of the course, the basic technological processes for lithography and pattern transfer techniques are discussed. As applications of these technologies, fabrication processes are presented like CMOS and III-V technology, micromechanics, magnetic thin-film heads, flat-panel displays, micro optics, x-ray optics and quantum-effect electronic devices. The lectures are accompanied by exercises, where important original publications will be discussed and hands-on experiments in the clean room will be performed.
Main Topics:
- Resists
- Optical Lithography
- Electron-Beam Lithography
- X-Ray Lithography
- Wet-Chemical and Dry Etching Techniques
- Film Deposition Processes
- Micromechanics
- Thin-Film Technology
- Nanometer Structures Technology

Literature

Teaching and learning methods
Lecture “Technology for Micro- and Nanostructures”, 2 SWS
Exercise “Technology for Micro- and Nanostructures”, 1 SWS

Workload
Preparation and Evaluation: 45 h
Active Time: 75 h
Sum: 120 h

Assessment
The grade of the module will be the grade of the oral or written (depending on the number of participants) exam. No prerequisites are necessary for exam registration

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
-
Using the Advanced Design System (ADS) in Electronic Design

Modules referring to Special Subjects in Engineering

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272098</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Dr.-Ing. Christoph Bromberger</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr.-Ing. Christoph Bromberger</td>
</tr>
</tbody>
</table>

Allocation of study programmes

- Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
- Communications and Computer Engineering, M.Sc., Elective Module, Engineering Sciences
- Electrical Engineering, M.Sc., Optional Module, General Electrical Engineering
- Electrical Engineering, M.Sc., Optional Module, Communication and System Technology
- Communications Technology, M.Sc., Elective Module, Microelectronics

Recommended prerequisites

- Bachelor-Level Analog Design Skills
- Some understanding of S-parameters is helpful

Learning objectives

The students gain an in-depth understanding of a significant analog simulation tool. They demonstrate their abilities to set up as well as to stream-line circuit simulations. Attendees employ ADS in high-frequency layout. They are used to ADS data structures and recognize ways to fully exploit their composition. Participants regularly scrutinize and critically judge their simulation results.

Syllabus

- The ADS project structure
- Setting up, performing and simplifying schematics simulations
- Using the data display
- Understanding ADS data structures
- Measurement Equations
- Optimizing circuits with the help of ADS
- (Semi-) automatic layout generation
- 2d electromagnetic simulation
- Exporting the layout

| Literature | - ADS handbooks and tutorials
- A script is available for this lecture |
| --- | --- |

| Teaching and learning methods | Lecture “Using the Advanced Design System (ADS) in Electronic Design”, 2 SWS
Exercise “Using the Advanced Design System (ADS) in Electronic Design”, 1 SWS |
| --- | --- |

| Workload | Lectures: 10 h
Exercises: 30 h
Self-Study: 20 h
Homework: 30 h
Exam Preparation and Evaluation: 30 h
Sum: 120 h |
| --- | --- |

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Usually written exam of 120 minutes,</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
<th>The grade of the module will be the grade of the exam.</th>
</tr>
</thead>
</table>

| Basis for | Masters Thesis in the area of biosensors. |
Additional Key Qualifications

Modules referring to Optional Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822286000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>not specified</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>not specified</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>not specified</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>not specified</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>not specified</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>not specified</td>
</tr>
<tr>
<td>Syllabus</td>
<td>not specified</td>
</tr>
<tr>
<td>Literature</td>
<td>not specified</td>
</tr>
<tr>
<td>Teaching and learning methods</td>
<td>not specified</td>
</tr>
<tr>
<td>Workload</td>
<td>not specified</td>
</tr>
<tr>
<td>Assessment</td>
<td>not specified</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>not specified</td>
</tr>
<tr>
<td>Basis for</td>
<td>not specified</td>
</tr>
</tbody>
</table>
Cultural Crossroads for Communications Technology

Modules referring to Optional Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822271729</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>2</td>
</tr>
<tr>
<td>Attendance time</td>
<td>2</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr. phil. Sandra Mann</td>
</tr>
</tbody>
</table>

Allocation of study programmes

- minimum number of participants 8, maximum 24
- Electrical Engineering, M.Sc., Elective Module, Engineering Sciences
- Communications Technology, M.Sc., Optional Non-Technical Module

Recommended prerequisites

- Basic skills in using presentation software (PowerPoint, Open Office Impress or similar)
- Good knowledge of English

Learning objectives

Students acquire basic presentation skills. The student selects relevant topics about his or her home country, recognizes aspects of general interest and researches on them, and prepares an oral presentation. Peculiarities of the own home culture will be identified, described and reflected. Students will practice discussing issues and defending their own statements. Students acquire intercultural competence by relating to their peers of other countries in a multicultural group.

Syllabus

- Preparation of a presentation using guidelines
- Oral presentation
- Group discussion on content

Literature

-
<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Seminar "Cultural Crossroads", 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>Active Time: 26 h</td>
</tr>
<tr>
<td></td>
<td>Preparation and Evaluation: 34 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 60 h</td>
</tr>
<tr>
<td>Assessment</td>
<td>Participation in seminar compulsory (students may miss a maximum of two dates)</td>
</tr>
<tr>
<td></td>
<td>seminar presentation (30 min.)</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>not graded (pass/fall)</td>
</tr>
<tr>
<td>Basis for</td>
<td>-</td>
</tr>
</tbody>
</table>
Technical Presentation Skills for Communications Technology
Modules referring to Optional Modules

Code 8822271730

ECTS credits 3

Attendance time 2

Language of instruction english

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof. Dr.-Ing. Hermann Schumacher

Instructor(s) Prof. Dr.-Ing. Hermann Schumacher
M.Sc. Filipe Tabarani

Allocation of study programmes Communications Technology, M.Sc., Optional Non-Technical Module

Recommended prerequisites Basic knowledge of presentation software (e.g. PowerPoint, LibreOffice Impress)
Bachelor-level engineering background.

Learning objectives Students recognize proven techniques for technical oral presentations supported by visual aids. In the preparation of their presentation, they distinguish different target audiences and devise their presentation strategy accordingly. They differentiate between different forms of presentation (oral, written, web-based) and develop suitable communication strategies. Students create an oral presentation on a topic of their choice within an annually changing topical framework, defend their ideas in front of their peers, and summarize their presentation in a three-page written report.

Syllabus - Presentation quality criteria
- Researching a subject
- Structuring oral presentations
- Visual aids preparation
- Multimedia techniques
- Public speaking
- Handling questions and critique
- Written presentations:
 1. Research reports
2. Journal articles
3. Theses
- Presenting technical matters on the web
- Seminar trial presentations

<table>
<thead>
<tr>
<th>Literature</th>
<th>-</th>
</tr>
</thead>
</table>
| **Teaching and learning methods** | Online lecture and supporting reading material
Seminar in block format (2 dates of 6 hours each) |
| **Workload** | Online materials and assessments: 28 h
Seminar participation: 12 h
Researching and preparing seminar presentation: 30 h
Preparing written report: 20 h
Sum: 90 h |
| **Assessment** | The module will be passed once the Completion of all online assessments, a Seminar presentation and a 3-page written report have been passed. |
| **Grading procedure** | not graded |
| **Basis for** | - |
Practical Training
Modules referring to Practical Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822285000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>0</td>
</tr>
<tr>
<td>Attendance time</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>german or english</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Dr. Wolfgang Minker</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>No english version available yet.</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Approval by the Industrial Internship office</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>The Industrial Internship aims at gathering subject knowledge and experience in a private company. Furthermore, the Industrial Internship conveys insights into workaday life and prepares the student for entering his/her professional career.</td>
</tr>
<tr>
<td>Syllabus</td>
<td>The Industrial Internship comprises activities in the engineering field, notably in the area of Electronics Systems Engineering, Information and Communication Technology as well as at the margin between Computer Science and Engineering Sciences.</td>
</tr>
<tr>
<td>Literature</td>
<td>No</td>
</tr>
<tr>
<td>Teaching and learning methods</td>
<td>External internship in a private company, seminar with presentations.</td>
</tr>
</tbody>
</table>
| Workload | 9 weeks of practical activities
 10 minutes seminar presentation
 Participation in two additional seminar meetings
 Short report 15 pages maximum |
<table>
<thead>
<tr>
<th>Assessment</th>
<th>No english version available yet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading procedure</td>
<td>No english version available yet.</td>
</tr>
<tr>
<td>Basis for</td>
<td>-</td>
</tr>
</tbody>
</table>
Project Advanced Analog and Mixed-Signal CMOS Circuit Design
Modules referring to Practical Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822274131</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>4</td>
</tr>
<tr>
<td>Attendance time</td>
<td>3</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English/German</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td></td>
</tr>
<tr>
<td>- Electrical Engineering, M.Sc., Praxismodul</td>
<td></td>
</tr>
<tr>
<td>- Information Systems Technology, M.Sc., Praxismodul</td>
<td></td>
</tr>
<tr>
<td>- Communications Technology, M.Sc., Optional Lab Course, Microelectronics</td>
<td></td>
</tr>
<tr>
<td>- Communications Technology, M.Sc., Optional Lab Course, Track: Communications Circuits and Systems (CCS)</td>
<td></td>
</tr>
</tbody>
</table>

Recommended prerequisites
Course and above average exam in "Integrated Analog Circuits/Integrierte Analogschaltungen" or proven equivalent knowledge. Highly successful participation in "Project - Analog CMOS Circuit Design". Recommended is the course and above average exam in "Circuit Design in Nanometer CMOS". Depending on the project focus it is recommended to have successfully completed the "Project - Design of Integrated Circuits". A written application including a proposed outline of the design goals is required from the student, and it will be evaluated for an admission to the project.

Learning objectives
The students are able to describe the overall flow of the design of mixed-signal integrated circuits in deep-submicron CMOS technologies. They can accurately operate a complex circuit simulator tool and understand its in depth functions. The students are able to identify the performance determining circuit parts in an analog CMOS design. They can compare different possibilities to improve a given analog circuit by means of selecting different architectures or alternative circuit implementations. The students are able to layout basic circuit blocks. They defend their circuit selection and circuit design against questions and criticism. The students now how to perform a mixed-signal simulation and discuss the partitioning of digital vs. analog functionality of a design.
Syllabus

Design project based on the "Project - Analog CMOS Circuit Design" with a content upon written project proposal and mutual agreement on the same. Thereby, project proposals might include the improvement of the circuit performance of the previous design project, the reduction of power consumption of the overall previously designed circuit, the transistor level layout of the designed project. Project proposals can also include follow-up projects e.g. considering A/D converters, differential amplifiers, mixed-signal circuits including digital co-design, RF CMOS, or others.

Literature

"Project - Advanced Analog and Mixed-Signal CMOS Circuit Design", 3 SWS

Workload

Active Time: 80 h
Preparation and Evaluation: 40 h
Sum: 120 h

Assessment

The module will be passed after fulfilment of the following criteria:
- Successful completion of all given design and layout tasks
- Submission of a design report
- Passing a mid-term and a final Q&A on the designed circuit

Grading procedure

The module is not graded.

Basis for

-
Project Analog CMOS Circuit Design

Modules referring to Practical Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822271090</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>6</td>
</tr>
<tr>
<td>Attendance time</td>
<td>5</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Maurits Ortmanns</td>
</tr>
</tbody>
</table>

Allocation of study programmes
- Electrical Engineering, M.Sc., Elective Module, Communication and System Technology
- Electrical Engineering, M.Sc., Elective Module, Microelectronics
- Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology
- Information Systems Technology, M.Sc., Elective Module
- Communications Technology, M.Sc., Optional Lab Course, Microelectronics
- Embedded Systems, M.Sc., Application Subject, Mixed Signal Systems

Recommended prerequisites
- Course and exam in Analog CMOS Circuit Design or proven equivalent knowledge.
- Written application for the project.

Learning objectives
The students are able to describe the overall flow of the design of integrated circuits in deep-submicron CMOS technologies. They can accurately operate a complex circuit simulator tool. The students are able to apply hand calculation to extract basic design specifications for the operating point and transistor scaling. They compose and model toplevel system design and are able to setup dc, ac, transient and monte carlo simulations. They can give examples for various structures for operating point generation and are able to compare them. The students can distinguish differential amplifier structures and explain their behaviour and operation. They can further design, simulate and evaluate differential...
amplifier structures. The students are able to explain an electronic system, subdivide into and analyze the functionality of the subblocks, and theoretically as well as experimentally explain the transistor level design.

<table>
<thead>
<tr>
<th>Syllabus</th>
<th>Yearly design project including</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Design of Biasing Networks</td>
</tr>
<tr>
<td></td>
<td>- Design of multistage Differential Amplifier</td>
</tr>
<tr>
<td></td>
<td>- Design of bandgap reference circuits</td>
</tr>
<tr>
<td></td>
<td>- Design of high-speed comparators</td>
</tr>
<tr>
<td></td>
<td>- Design of a Switched Capacitor Integrator</td>
</tr>
<tr>
<td></td>
<td>- Design of an Analog-Digital-Converter</td>
</tr>
<tr>
<td></td>
<td>- Toplevel design</td>
</tr>
<tr>
<td></td>
<td>- Layout of the modules</td>
</tr>
</tbody>
</table>

Literature	- Handouts for the various modules of the project and multimedia learning tool for the design environment
	- Allen P.E., Holberg, D.R. “CMOS Analog Circuit Design”, Oxford University Press
	- Baker, R.J. “CMOS Circuit Design, Layout, and Simulation”, Wiley

| Teaching and learning methods | Project “Analog CMOS Circuit Design”, 5 SWS |

<table>
<thead>
<tr>
<th>Workload</th>
<th>Active Time: 60 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation and Evaluation: 120 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 180 h</td>
</tr>
</tbody>
</table>

| Assessment | The credit points will be awarded once all phases of the course have been passed. The exact modalities will be announced at the beginning of the course. |

| Grading procedure | The module is not graded. |

| Basis for | - |
Project Design of Integrated Systems
Modules referring to Practical Modules

Code: 8822270428

ECTS credits: 6

Attendance time: 5

Language of instruction: English (Winter Term) / German (Summer Term)

Duration: 1 Semester

Cycle: each Semester

Coordinator: Prof. Dr.-Ing. Maurits Ortmanns

Instructor(s): Prof. Dr.-Ing. Maurits Ortmanns
Dr.-Ing. Joachim Becker

Allocation of study programmes:
Electrical Engineering, M.Sc. (FSPO 2014), Practical Module
Electrical Engineering, M.Sc. (FSPO 2012), Elective Module
Electrical Engineering, M.Sc. (FSPO 2012), Communication and System Technology, Elective Module
Electrical Engineering, M.Sc. (FSPO 2012), Communication and Energy Technology, Elective Module
Information Systems Technology, M.Sc. (FSPO 2014), Practical Module
Communications Technology, M.Sc. (FSPO 2015), Track Communications Engineering, (In-Depth) Practical Module
Communications Technology, M.Sc. (FSPO 2015), Track Communications Circuits and Systems, (In-Depth) Practical Module

Recommended prerequisites:
- Good programming skills in one programming language
- Background in binary number systems, especially two’s complement (BK2) number system
- Representation of fractional numbers with BK2
- Binary addition, binary subtraction and binary multiplication for integer and fractional numbers
- Pipelining
- Digital logic gates (transistor level is not required)
- Functionality of registers, multiplexers
- Functionality of adders, comparators, counters

Learning objectives:
The students are able to describe the overall design flow of integrated digital circuits and perform the task based on a functional description towards a
hardware realization on programmable logic devices. They are able to analyse a
circuit specification and to realize this as a hierarchical model on basis of the
hardware description language Verilog. They are able to program the Verilog
code, such that the hierarchical model is met. The students are able to operate
a simulator for Verilog code, to set up a simulation for their code, to run such
simulations and to evaluate the results. The students understand how to debug
their code upon the simulation results. The students can subdivide the task into
subblocks, are able to perform a task schedule and to fulfill the workpackages
upon such schedule.

<table>
<thead>
<tr>
<th>Syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td>- basic knowledge of the hardware description language Verilog</td>
</tr>
<tr>
<td>- synthesizable subset of Verilog</td>
</tr>
<tr>
<td>- design rules for synthesizable Verilog</td>
</tr>
<tr>
<td>- complete design flow from specification to hardware realization</td>
</tr>
</tbody>
</table>

The contents are imparted using a small example project. This project has to
be completed by the students by the end of the semester.

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents covering software and Verilog are provided.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project “Design of Integrated Systems”, 5 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Time: 60 h</td>
</tr>
<tr>
<td>Self-Study: 10 h</td>
</tr>
<tr>
<td>Preparation and Evaluation: 50 h</td>
</tr>
<tr>
<td>Group Work: 60 h</td>
</tr>
<tr>
<td>Sum: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
</tr>
</thead>
</table>
| Participation in all compulsory lectures and exercises, successful completion of all
given tasks according to the schedule is required. |

<table>
<thead>
<tr>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The module is not graded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>
Project Dialogue Systems
Modules referring to Practical Modules

Code 8822270435

ECTS credits 8

Attendance time 6

Language of instruction German and English

Duration 1 Semester

Cycle each Semester

Coordinator Prof. Dr.-Ing. Dr. Wolfgang Minker

Instructor(s) Prof. Dr.-Ing. Dr. Wolfgang Minker

Allocation of study programmes No english version available yet.

Recommended prerequisites No prerequisites from other lectures required. Some programming (C/C++, Java) and operating systems (Unix/Linux) knowledge would be helpful

Learning objectives The student shows a practical understanding of multimodal spoken dialogue systems technology. He is aware of the the interdisciplinarity of the research field. He applies his acquired knowledge through project-oriented practical work.

Syllabus Research in multimodal spoken language dialogue systems is performed on the basis of end-to-end systems including components for acoustic processing, speech signal analysis, recognition, spoken natural language understanding, dialogue processing and speech synthesis. In the framework of this component development several individual topics are proposed as practical studies. They may depend on the current development status of the prototype system demonstrator of the Dialogue Systems Group.

Literature To be distributed during the project

Teaching and learning methods Projekt “Dialogue Systems”, 6 SWS
Workload

Project “Dialogue Systems”, 6 SWS

Estimation of effort:
- Active Time: 192 h
- Preparation and Evaluation: 48 h
- Sum: 240 h

Assessment

The award of the credit points for this ungraded module is based on regular attendance and the completion of an assignment (presentation and paper). No prerequisites are necessary for exam registration.

Grading procedure

The module is not graded.

Basis for

Graduate theses in the area of spoken dialogue systems technology
Project Radio Frequency Electronics
Modules referring to Practical Modules

Code 8822271563
ECTS credits 5
Attendance time 3
Language of instruction English
Duration 1 Semester
Cycle each Semester
Coordinator Prof. Dr.-Ing. Hermann Schumacher
Instructor(s) Prof. Dr.-Ing. Hermann Schumacher
 Dr.-Ing. Andreas Trasser

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module
Communications Technology, M.Sc., Optional Lab Course

Recommended prerequisites
Radio Frequency Engineering; recommended additionally: High Frequency Microsystems or Monolithic Microwave ICs in High-Speed Systems

Learning objectives
Students analyze an initially incomplete set of technical requirements. They discuss the requirements, identifying missing information and break down the project into individual tasks. Recognizing the necessary radio frequency electronics concepts to be employed, they sketch a solution path and design the necessary components using off-the-shelf components, appraising issues like availability and bill of materials. A prototype is finally fully developed, constructed and assessed. Along the way, common pitfalls of working in projects, and proven project management issues are reviewed.

Syllabus
This project will realize a different radio frequency subsystem each year. The docents will describe a set of requirements, students will then set out to develop a system concept, research suitable off-the-shelf components, perform the complete design, and finally build and characterize a prototype. A written report describing design decisions, all data relevant to replicate the prototype, and characterization results will finalize the project. Docents will act as design consultants; additionally, short lectures will introduce important project management approaches such as Scrum, students will use simple project management techniques during the design and implementation phases.
| Literature | - M. Hoffmann, Hochfrequenztechnik - ein systemtheoretischer Zugang (in German)
| | - Lecture notes for RF Engineering
| | - David Rutledge, The Electronics of Radio
| | - S. Prasad/H. Schumacher/A. Gopinath, High-Speed Electronics and Optoelectronics (Chapter 5) |
| Teaching and learning methods | Project "Radio Frequency Electronics", Introductory lectures, 1 SWS
| | Project "Radio Frequency Electronics", design consulting sessions; guided design exercises; guided characterization exercises, 2 SWS |
| Workload | Active Time: 60 h
| | Preparation and Evaluation: 60 h
| | Self-Study: 30 h
	Sum: 150 h
Assessment	The award of the credit points for this ungraded module is based on regular attendance, completion of an assignment (presentation and paper) and the active participation in discussions. No prerequisites are necessary for exam registration.
Grading procedure	The module is not graded.
Basis for	Master thesis with radio frequency electronics content
Communication Networks
Modules referring to Practical Modules

Code 8822270440

ECTS credits 5

Attendance time 4

Language of instruction German, English

Duration 1 Semester

Cycle each Semester

Coordinator Prof. Dr.-Ing. Stefan Wesner

Instructor(s) Prof. Dr.-Ing. Stefan Wesner

Allocation of study programmes MSc Elektrotechnik, recommended optional module;
MSc Informationssystemtechnik, recommended optional module;
MSc Communications Technology, recommended optional practical course;

Recommended prerequisites Basic knowledge of computer networks from the lecture on Data Centre
Networks Architecture and Protocols or similar courses (e.g. “Grundlagen der
Rechnernetze”) is necessary. The students should be able to describe the basic
architecture of networks using models such as ISO/OSI. Basic characteristics of
typical local network protocols (Ethernet, TCP/IP, DHCP etc.) should be known
and the student should be able to name them and their typical application areas.

Learning objectives After the course, the students will be able to design and configure computer
networks on their own. The participants will have learned to compare different
computer systems with respect to energy consumption and performance. The
students will have the ability to assess which computer systems are suitable
for which problem cases and apply them to new application domains. The
participants will furthermore have learned to configure, compare and analyse
different computer systems for their usability in a computer cluster, both on soft-
and hardware-level. They will also be able to program small cluster applications.

Syllabus The course provides deeper insights into the area of communication networks,
with a specific focus on IP-based network protocols. Further to this, design and
architecture of computer cluster will be discussed. Diverse platforms are available
to give the students a better insight into the differences and key characteristics
of computer systems. With these platforms the students will be able to set up
different systems themselves and examine them for their suitability for different
usage and problem types.
<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>- George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair:</td>
</tr>
<tr>
<td>- Tanenbaum, Andrew S.: Computer Networks</td>
</tr>
<tr>
<td>- Comer, Douglas E.: Internetworking with TCP/IP</td>
</tr>
<tr>
<td>- Michel Dubois, Murali Annavaram, Per Stenström: Parallel Computer</td>
</tr>
<tr>
<td>Organization and Design</td>
</tr>
<tr>
<td>- Stevens Richard: TCP/IP Illustrated</td>
</tr>
<tr>
<td>- Request for Comments (RFC) Pages on www.ietf.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory / Practical Course, 4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>face time: 60 h</td>
</tr>
<tr>
<td>preparation: 90 h</td>
</tr>
<tr>
<td>total: 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No english version available yet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>No english version available yet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basis for</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
</tr>
</tbody>
</table>
Laboratory Digital Communications
Modules referring to Practical Modules

Code 88227227271

ECTS credits 5

Attendance time 4

Language of instruction English

Duration 1 Semester

Cycle each Semester

Coordinator Prof. Dr.-Ing. Robert Fischer

Instructor(s) Prof. Dr.-Ing. Robert Fischer
Dr. Werner Teich
Dipl.-Ing. Günther Haas

Allocation of study programmes
Elektrotechnik MSc, Elective Lab
Informationssystemtechnik MSc, Elective Lab
Communications Technology MSc, Elective Lab

Recommended prerequisites Module "Digital Communications"

Learning objectives The students will be able to assess and compare digital pulse amplitude modulated communication schemes and its variants / generalizations based on real-world signals and using measurement equipment like oscilloscope and spectrum analyzer. Besides this, the students are able to devise and perform numerical simulations of digital transmission schemes. The connection, equivalence, and differences between real-world signal / channels and the respective models in the numerical simulations can be formulated and explained. Digital modulation formats can be assessed in the power-bandwidth plane.

Syllabus
- Digital Pulse-Amplitude Modulation
- Implementation of PAM Transmission in MATLAB
- Variants of PAM Transmission Schemes
- Signal Space Representation
- Equalization of Dispersive Channels
- Orthogonal Frequency-Division Multiplexing
| **Literature** | A lab manuscript with detailed exposition of the theoretical background, homework problems, and the lab experiments is provided. |
| **Teaching and learning methods** | Lab "Digital Communications", 4 SWS |
| **Workload** | Active Time: 30 h
Preparation and Evaluation: 90 h
Self-Study: 30 h
Sum: 150 h |
| **Assessment** | Oral colloquium at start of each lab project; active participation at all projects; oral colloquium about the obtained results. |
| **Grading procedure** | pass / no pass |
| **Basis for** | - |
Laboratory Semiconductor Technology
Modules referring to Practical Modules

Code 8822270446

ECTS credits 5

Attendance time 4

Language of instruction english and german

Duration 1 Semester

Cycle each Summer Semester

Coordinator Jun.-Prof. Dr.-Ing. Steffen Strehle

Instructor(s) Dr. Wolfgang Ebert
Jun.-Prof. Dr.-Ing. Steffen Strehle

Allocation of study programmes
Electrical Engineering, M.Sc., Elective Module
Communications Technology, M.Sc., Optional Lab Course, Microelectronics

Recommended prerequisites Lecture "Semiconductor Technology" or "Modern Semiconductor Devices"

Learning objectives Students discover how to work under clean-room conditions, recognizing how different technology steps may be combined to produce electron devices. Furthermore, they practice to operate complex semiconductor-technology equipment.
Participants modify the surface of semiconductor wafers employing thermal evaporation of different metals like Aluminum and Gold. They create microstructured contacts by photo-lithography. Test structures, diodes, and transistors are evaluated using fundamental current-voltage and capacitance-voltage measurements. The students evaluate the influence of scaling parameters (geometry, size) on the electrical behaviour of the devices (output- and transfer-characteristics).

Syllabus Aim of this lab course is the fabrication of field-effect-transistors (GaAs-MESFET’s) and their electrical characterization. The lab course takes place in a cleanroom facility specifically equipped for education. Main focuses this lab course are:
- deposition of metals by evaporation
- patterning of contacts by optical lithography
- patterning of contacts by wet etching
- manufacturing of ohmic- and Schottky contacts
- electrical characterization of the fabricated devices

Literature

Teaching and learning methods
Labor “Semiconductor Technology”, 4 SWS

Workload
Active Time: 28 h
Preparation and Evaluation: 122 h
Sum: 150 h

Assessment
Successful completion requires fulfillment of the following criteria: successful participation in the lab, active participation during the colloquium, submission and correction (where applicable) of the experiment notes.

Grading procedure
not graded

Basis for
Master’s Thesis
Laboratory Microcomputers

Modules referring to Practical Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272066</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>5</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>english and german</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Prof. Dr.-Ing. Stefan Wesner</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>Communications Technology, M.Sc., Wahlpraktikum</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>General knowledge of electrical engineering, digital technology, programming.</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>The students are able to analyze the given task by means of a project specification. They can identify the different functional units of a specified microcontroller based control module, subdivide and convert them into a schematic using analog and digital circuitry. They also design a printed circuit board layout using a CAD tool and assemble the board themselves. During the design phase they also examine datasheets and choose several electronic parts for their circuit. Additional to the hardware design and assembly the students can separate their software design into a hardware abstraction layer (HAL) and a main program logic and illustrate it in a model by choosing suitable diagrams and state-charts. The students can write software using the programming language ‘C’. Programming and testing the board is done by operating a special integrated development environment (IDE) and a software tool for testing the CAN-Bus communication. The students solve errors in hardware and software by iteratively modifying and testing their code using a debugger tool and devices like multimeters and oscilloscopes. At the end of the lab the students demonstrate their working module and finally write a complete documentation that describes all work that has been done.</td>
</tr>
<tr>
<td>Syllabus</td>
<td>This lab course introduces the student to various applications of microcomputers and to the challenges faced in realizing those applications. The focus is on embedded systems, different kinds of microcontrollers, sensors and actuators,</td>
</tr>
</tbody>
</table>
and on bus communication. The students work on a common project, to which each team contributes an almost independently working module. The project itself is a sorting facility consisting of 10 motors and about 30 primarily digital sensors, like push-button switches or light barriers. The sorting facility classifies packages of different shapes, colors and heights and sorts them according a user’s request. Finally, a robot takes the sorted packages and stacks them up. The sorting facility is constructed with Fischertechnik elements. It is provided in a fully operational state, with wired actuators and sensors, but without electric control. The latter must be designed and implemented by the students. To each team a module within the overall system is assigned. The modules consist of an actuator, several sensors, a microcontroller, a CAN controller and other electronic parts needed to realize the board. With the help of the CAD software EAGLE, a circuit diagram and board layout have to be developed. After assembling the board and testing it, the team programs the microcontroller with a C program. Communication between modules and the main control unit is carried out by the field bus Controller Area Network (CAN). To enable user inputs and to display status information, an embedded web-server and a webclient are used. The main control unit and the web-server are on separate boards provided by the course staff. Each team receives a module consisting of an actuator, several sensors, a PIC microcontroller, a CAN controller and other electronic parts. With the help of the CAD software EAGLE, a circuit diagram and board layout have to be developed. After assembling the board and testing it, the team programs the microcontroller. Communication between modules and the main control unit is carried out by the field bus Controller Area Network (CAN). To enable user inputs and to display status information, an embedded web-server and a web-client are used. The main control unit and the web-server are on separate boards with high end Infineon C167 microcontrollers and the real-time operating system EUROS.

<table>
<thead>
<tr>
<th>Literature</th>
<th>Background information and documentation provided in the course booklet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching and learning methods</td>
<td>Labor “Microcomputers”, 4 SWS</td>
</tr>
<tr>
<td>Workload</td>
<td>Active Time: 120 h</td>
</tr>
<tr>
<td></td>
<td>Preparation and Evaluation: 30 h</td>
</tr>
<tr>
<td></td>
<td>Sum: 150 h</td>
</tr>
<tr>
<td>Assessment</td>
<td>No english version available yet.</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>No english version available yet.</td>
</tr>
<tr>
<td>Basis for</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory Optoelectronics

Modules referring to Practical Modules

<table>
<thead>
<tr>
<th>Code</th>
<th>8822270444</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>5</td>
</tr>
<tr>
<td>Attendance time</td>
<td>4</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English / German</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Summer Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr. Peter Unger</td>
</tr>
</tbody>
</table>
| Instructor(s) | Prof. Dr. Ferdinand Scholz
| | Prof. Dr. Peter Unger
| | apl. Prof. Dr.-Ing. habil. Rainer Michalzik |

Allocation of study programmes
- Electrical Engineering, M.Sc., Elective Module
- Communications Technology, M.Sc., Optional Lab Course, Microelectronics
- Electrical Engineering, M.Sc., Compulsory Subject Module, Microelectronics
- Electrical Engineering, M.Sc., Optional Module, Automation and Energy Technology

Recommended prerequisites
No english version available yet.

Learning objectives
The students are able to explain the physics of commonly used optoelectronic devices and systems like optical waveguides, optical couplers, photodiodes, semiconductor lasers, tunable laser diodes, erbium-doped fiber amplifiers, optical fibers, and optical data transmission systems. They are able to prepare experiments to measure the basic device and system characteristics. They can extract the relevant data describing the device or system performance. The students are able to critically interpret their measurements and to write a scientifically profound illustrated report on their measurements and their interpretation.

Syllabus
The laboratory course gives students an excellent opportunity to explore the exciting microworld of laser diodes, optical fibers, photodetectors, fiber amplifiers, and optical transmission systems. Seven half-day experiments are performed, which deal with the following topics:
- Light propagation and coupling
- Optical fiber characterization
- Photodiodes
- Semiconductor lasers
- Tunable laser diodes
- Erbium-doped fiber amplifier
- Optical data transmission

Literature
For each experiment, a detailed manuscript is provided which describes the theoretical background and guides through the experimental part.

Teaching and learning methods
Labor "Optoelectronics", 4 hours per week

Workload
Active Time: 28 h
Preparation and Evaluation: 84 h
Self-Study: 38 h
Sum: 150 h

Assessment
The award of the credit points for this ungraded module is based on regular attendance and the active participation in discussions. No prerequisites are necessary for exam registration.

Grading procedure
The module is not graded.

Basis for
-
Laboratory RF Engineering
Modules referring to Practical Modules

Code 8822271735

ECTS credits 5

Attendance time 3

Language of instruction English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Dr.-Ing. Frank Bögelsack

Instructor(s) Prof. Dr.-Ing. Christian Waldschmidt
Prof. Dr.-Ing. Christian Damm
Dr.-Ing. Frank Bögelsack
Dr.-Ing. Tobias Chaloun

Allocation of study programmes Communications Technology, M.Sc., Optional Lab Course

Recommended prerequisites Participation at the lecture "Introduction to Microwave Engineering"

Learning objectives After successful completion of this lab course the students are familiar with the most important measurement devices of the RF and microwave technique and to judge the results correctly, in the first place the vector network analyzer and the spectrum analyzer.
They are familiar with measurements of analogue modulation schemes and the related topics like intermodulation products.
They are able to apply a modern CAD system on linear circuits and systems.
The students are able to determine the properties of phase-locked loops with help of modern measurement equipment.
They are familiar with the measuring methods to determine scalar scattering parameters of both coaxial and planar circuits.
They are able to measure antenna patterns and to evaluate the results critically.

Syllabus The experiments deal with:
1. Waves on transmission lines
 - Characterization of unknown complex impedances by determination of the voltages
 distribution on a TEM transmission line
2. Modulation
- Basics of amplitude, frequency, and phase modulation, intermodulations
3. CAD (Analysis and optimization of linear circuits)
 - Analysis and optimization of passive and active circuits using an up-to-date commercial microwave CAD tool (HPEESOF ADS)
4. Scalar scattering parameter measurements (coaxial)
 - Introduction to coaxial measurement techniques, filters, impedance transformers
5. Planar circuits
 - Characterization of glass fiber reinforced Teflon (PTFE) substrates by measurement of planar resonators, 4-port coupler
6. Frequency synthesis
 - Oscillator, phase-locked loop, hold-in range, louch-in range, signal source analyzer, spectrum analyzer
7. Scalar scattering parameter measurements (waverguide)
 - Introduction to waveguide measurement techniques, circulators, irises, inverters, filters
8. Antenna measurements
 - Measurements of the radiation diagrams of a K-band horn antenna, a parabolic antenna, patch antennas, and a phased array antenna with a vector network analyser

Literature
Will be given in the written handouts of each experiment

Teaching and learning methods
Laboratory “RF Engineering”, 4 SWS

Workload
Preparation and Evaluation: 110 h
Active Time: 40 h
Sum: 150 h

Assessment
The credit points will be awarded once all phases of the course have been passed. The exact modalities will be announced at the beginning of the course.

Grading procedure
The module is not graded.

Basis for
-
Laboratory Vector Network Analysis
Modules referring to Practical Modules

Code 8822271737

ECTS credits 5

Attendance time 3

Language of instruction English

Duration 1 Semester

Cycle each Semester

Coordinator Prof. Dr.-Ing. Hermann Schumacher

Instructor(s) Prof. Dr.-Ing. Hermann Schumacher
Dr.-Ing. Andreas Trasser

Allocation of study programmes
- Electrical Engineering, M.Sc., Elective Module,
- Communications Technology, M.Sc., Optional Lab Course,
- Information Systems Technology, M.Sc., Optional Lab Course

Recommended prerequisites Basic knowledge of RF engineering

Learning objectives Students describe the most important concepts of vectorial measurements at radio frequencies and assess key tradeoffs between diverse measurement techniques, choice of measurement parameters and error correction procedures. Students employ accurate calibration techniques and operate a vector network analyzer, distinguishing between frequency and time domain characterization techniques. They demonstrate time domain reflectometry using vector network analysis. Measurement results are interpreted and used to prepare equivalent circuit models of the measured components or to carry out deembedding of test fixtures of active devices.

Syllabus Vector Network Analyzers (VNAs) are indispensable instruments in every RF laboratory as they provide the most common way to characterize network parameters (e.g. scattering parameters, impedance or admittance parameters, etc.) of electrical networks (power amplifiers, filters and other n-port networks). As a result, understanding the fundamental principles of VNA measurements belongs to the essential knowledge of an RF engineer. The main goal of this laboratory
The course is to introduce students the fundamental RF VNA measurement techniques, principles, manipulations and measurement procedures. Throughout different measurement exercises, this course will provide students firm grasp and validation of the common theory gained in previous electro-technical courses.

List of experiments:
- R, L, C measurements
- Measurements on a bias tee (RF/DC coupler)
- Measurements on a radio frequency filter
- Measurements on a semiconductor diode
- De-embedding procedures and measurements of FET and BJT transistors in a test fixture
- Measurements on coaxial cables (dielectric constant, length)
- Time domain reflectometry: measurements on passive components, localizations of faults in transmission lines
- Time domain reflectometry: measurements on passive
- Introduction to the time gating as a deembedding technique

Literature
Scattering parameter tutorial (Prof. Schumacher, provided online); detailed descriptions for each experiment

Teaching and learning methods
Laboratory “Vector Network Analysis”, 3 SWS

Workload
Active Time: 29 h
Preparation and Evaluation: 121 h
Sum: 150 h

Assessment
The credit points will be awarded once all phases of the course have been passed. The exact modalities will be announced at the beginning of the course.

Grading procedure
The module is not graded.

Basis for
Master thesis with topics requiring vector network analysis
Seminar Communications Engineering
Modules referring to Seminar

<table>
<thead>
<tr>
<th>Code</th>
<th>8822272461</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>3</td>
</tr>
<tr>
<td>Attendance time</td>
<td>2</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.-Ing. Robert Fischer</td>
</tr>
</tbody>
</table>
| Instructor(s) | Prof. Dr.-Ing. Martin Bossert
 | Prof. Dr.-Ing. Robert Fischer
 | Prof. Dr.-Ing. Wolfgang Minker
 | Dr. Werner Teich |
| Allocation of study programmes | Elektrotechnik MSc, Elective Module
 | Informationssystemtechnik MSc, Elective Module
 | Communications Technology MSc, Elective Module |
| Recommended prerequisites | Digital Communications
 | or Channel Coding
<pre><code> | or Applied Information Theory |
</code></pre>
<p>| Learning objectives | By means of selected current topics of Communications Engineering (especially Digital Transmission, Information Theory, Coding Theory, and Signal Processing) the student practices presentation skills and working techniques to prepare talks and the required accompanying material. The student is able to cooperate with external experts and specialist in the field in a goal-oriented fashion. He is able to work up and communicate problems from the literature in a systematic and structured manner. |
| Literature | Templates for the presentation slides and the handout material are provided; Literature on the topic is proposed; a literature search by the student is part of the seminar. |</p>
<table>
<thead>
<tr>
<th>Teaching and learning methods</th>
<th>Seminar, 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td></td>
</tr>
<tr>
<td>Active Time: 30 h</td>
<td></td>
</tr>
<tr>
<td>Preparation and Evaluation: 60 h</td>
<td></td>
</tr>
<tr>
<td>Sum: 90 h</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>Participation in the seminar presentations is required. Each student must hold a presentation and create a written report on the given topic.</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>The module mark is formed based on the presentation, the written handout, and the contributions of the student to the discussion.</td>
</tr>
<tr>
<td>Basis for</td>
<td>--</td>
</tr>
</tbody>
</table>
Seminar Heterostructure Devices and Circuits
Modules referring to Seminar

Code
8822274187

ECTS credits
3

Attendance time
2

Language of instruction
English

Duration
1 Semester

Cycle
each Semester

Coordinator
Prof. Dr.-Ing. Hermann Schumacher

Instructor(s)
Prof. Dr.-Ing. Hermann Schumacher
PD Dr. Hans Armin Kestler
LB Dr. Mohamed Oubbati

Allocation of study programmes
ET Master Vertiefungsmodul
IST Master Vertiefungsmodul
CT Master In-depth module

Recommended prerequisites
- Introduction to Microwave Engineering
- Monolithic Microwave ICs in High Speed Systems or similar analog circuit design course
- Modern Semiconductor Devices or similar course on semiconductor devices
- Scientific presentation skills (offered by the Language Center) or Technical presentation Skills

Learning objectives
After successful completion of the seminar, the student is able to understand scientific texts from recent literature on the subject of heterostructure devices and systems. He/she is able to apply knowledge from prior courses in analyzing and evaluating the reported results, and independently create a presentation on the topic which puts the paper's content into a larger context, emphasizes important results, criticizes omissions or problems encountered, and identifies potential applications and/or opportunities for further research.
Syllabus
The seminar covers a wide range of different research topics in rf-engineering. Each year, a couple of focus topics is selected. For each focus topic, 4-6 presentations are given. The focus topics cover:
- Microwave and millimeter-wave circuit concepts
- Semiconductor technologies involving heterostructures, such as AlGaAs/GaAs/InGaAs pHEMT or Si/SiGe BiCMOS
- Advanced electronic device concepts involving heterostructures, such as strained-Si CMOS

Literature
For some topics, literature is provided during the seminar. Literature search by the students is part of the seminar.

Teaching and learning methods
Seminar (2 SWS)

Workload
Praesenzzeit: 30 h
VorNachbereitung: 60
Summe: 90 h

Assessment
Students are expected to miss no more than two sessions of the seminar to successfully complete the course. They will create and deliver a presentation with a length of no less than 30 minutes (including discussion) on a paper assigned to them. Evaluation depends on regular participation as well as presentation and understanding of the own topic, chosen during the seminar.

Grading procedure
The module grade is based on the grades of Evaluation of presentation (70%) and Evaluation of the abstract (30%). The calculation of the module grade from the partial achievements is done by the examiner. The Transcript of Records shows only the overall module grade as an exam achievement.

Basis for
-
Seminar Microwave Circuits and Systems
Modules referring to Seminar

Code 8822274044

ECTS credits 3

Attendance time 2

Language of instruction English

Duration 1 Semester

Cycle each Summer Semester

Coordinator Prof Dr.-Ing. Christian Waldschmidt

Instructor(s) Prof Dr.-Ing. Hermann Schumacher
Prof Dr.-Ing. Christian Waldschmidt
Prof Dr.-Ing. Christian Damm
Dr.-Ing. Frank Bögelsack
Dr.-Ing. Tobias Chaloun

 Allocation of study programmes Elektrotechnik, M. Sc., Wahlmodul
Informationssystemtechnik, M. Sc., Ma Wahlmodul
Communication Technology, M. Sc., Elektive Module

Recommended prerequisites - Introduction to Microwave Engineering,
- Introduction to Microwave Communication Systems,
- Scientific presentation skills (offered by the Language Center) or Technical Presentation Skills.

Learning objectives After successful completion of the seminar, the student is able to understand scientific texts from recent literature on the subject of microwave circuits and systems. He/she is able to apply knowledge from prior courses in analyzing and evaluating the reported results, and independently create a presentation on the topic which puts the paper's content into a larger context, emphasizes important results, criticizes omissions or problems encountered, and identifies potential applications and/or opportunities for further research.

Syllabus The seminar covers a wide range of different research topics in RF engineering. Each year, a couple of focus topics is selected. For each focus topic, 4--6 presentations are given. The focus topics cover:
- Millimeter-wave circuit design
- Technologies for modern RF systems
- System aspects of RF sensing, radar
- Signal processing for radar systems
- Phased arrays and MIMO systems
- Millimeter-wave antennas

Literature
For some topics, literature is provided during the seminar. Literature search by the students is part of the seminar.

Teaching and learning methods
Seminar, 2 SWS

Workload
Active Time: 30 h
Preparation and Evaluation: 60 h
Sum: 90 h

Assessment
The module will be passed once the Students don’t miss more than two sessions of the seminar. They will create and deliver a presentation with a length of no less than 30 minutes (including discussion) on a paper assigned to them.

Grading procedure
The grade of the module will be the grade of the exam.

Basis for
-
Seminar Research Trends in the Internet of Things
Modules referring to Seminar

<table>
<thead>
<tr>
<th>Code</th>
<th>8822274173</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>3</td>
</tr>
<tr>
<td>Attendance time</td>
<td>1</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English or German</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Dr. Jörg Domaschka</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Dr. Jörg Domaschka</td>
</tr>
</tbody>
</table>

Allocation of study programmes
- Elektrotechnik Master, in-depth module
- Informationssystemtechnik Master, in-depth module
- Communications Technology, M.Sc., Seminar

Recommended prerequisites
None

Learning objectives
Based on up-to-date examples, students learn and deepen their skills in independent and self-responsible working with scientific literature as well as with written and oral presentation of scientific and technical content. Students reflect presented content and practise expressing their opinion in discussions among peers. Depending on their topic, students get to know a concrete system, a generic concept, or one or multiple technical implementations. At the end of the semester they are able to put their topic in a wider context and are able to autonomously judge on the pros and cons.

Syllabus
At the beginning students are introduced to basic principles of scientific work including literature research, writing techniques, and presentation styles. This shall help and guide students from a methodological point of view. The actual work (paper writing and preparation of presentation) happens in tight and individual interaction with the respective advisor. The results of the research are then presented in front of the plenum and discussed in the group. Topic-wise, the seminar covers all aspects of IoT ranging from the operation of a data centre, to specialised operating systems, to big data analytics, and middleware.
<table>
<thead>
<tr>
<th>Literature</th>
<th>Depends on the subject and is assigned individually.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching and learning methods</td>
<td>Seminary (3 ECST)</td>
</tr>
</tbody>
</table>
| **Workload** | Time of presentness: 15
Time for preparation and postprocessing: 75 |
| **Assessment** | The grade of the module will be the grade of the oral exam. No prerequisites are necessary for exam registration. |
| **Grading procedure** | The grade of the module will be the grade of the exam. |
| **Basis for** | - |
German as a Foreign Language for Communications Technology

Modules referring to Additive Key Qualifications

<table>
<thead>
<tr>
<th>Code</th>
<th>8822271739</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>8</td>
</tr>
<tr>
<td>Attendance time</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English/German</td>
</tr>
<tr>
<td>Duration</td>
<td>2 Semester Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Robert Fischer</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Lecturer Language Center, Ulm University</td>
</tr>
<tr>
<td>Allocation of study programmes</td>
<td>1st, 2nd semester MSc Communications Technology</td>
</tr>
<tr>
<td>Recommended prerequisites</td>
<td>Intensive German course offered by the Language Center before start of the 1st semester. Three to four courses on different levels. German courses I, II are based one on the other.</td>
</tr>
<tr>
<td>Learning objectives</td>
<td>Development of language skills: Listening, speaking, reading, writing. Each semester three to four courses with different levels run in parallel. Language levels: Groups are partly heterogeneous. German courses 1 and 2 are based one on the other. German for CT I: Possible levels: Working on A1.1, A1.2, A2.1, A2.2, B1.1, B1.2 (depending on entry level). German for CT II: Levels: Working on A1.2, A2.1, A2.2, B1.1, B1.2, B1+ (depending on progress during the first semester).</td>
</tr>
</tbody>
</table>
General Description of the Language levels (CEFR):

Level A1 (A1.1 + A1.2), CEFR (Common European Framework of Reference for Languages)

Students should be able to
- understand and use familiar, everyday expressions and very simple sentences, which relate to the satisfying of concrete needs.
- introduce him/herself and others as well as ask others about themselves – e.g. where they live, who they know and what they own – and can respond to questions of this nature.
- communicate in a simple manner if the person they are speaking to speaks slowly and clearly and is willing to help.

Comment: To reach this level, candidates need to have completed between up to 200 45-minute units of teaching, depending on their previous knowledge and learning requirements (Goethe Institut).

Level A2 (A2.1 + A2.2), CEFR

Students should be able to
- understand sentences and commonly used expressions associated with topics directly related to his/her direct circumstances (e.g. personal information or information about his/her family, shopping, work, immediate surroundings).
- make him/herself understood in simple, routine situations dealing with a simple and direct exchange of information on familiar and common topics.
- describe his/her background and education, immediate surroundings and other things associated with immediate needs in a simple way.

Comment: To reach this level, candidates need to have completed between 200 and 350 45-minute units of teaching, depending on their previous knowledge and learning requirements (Goethe Institut).

Level B1 (B1.1 + B1.2), CEFR

Students should be able to
- understand the main points when clear, standard language is used and the focus is on familiar topics associated with work, school, leisure time, etc.
- deal with most situations typically encountered when travelling in the language region.
- express him/herself simply and coherently regarding familiar topics and areas of personal interest.
- report on experiences and events, describe dreams, hopes and goals as well as make short statements to justify or explain his/her own views and plans.
Comment: To reach this level, candidates need to have completed between 350 and 650 45-minute units of teaching, depending on their previous knowledge and learning requirements (Goethe Institut).

Syllabus

For the two courses alike:
- vocabulary training
- grammar training
- development of communication skills

Literature

Max Hueber Verlag:

Menschen A1 (Deutsch als Fremdsprache), textbook & workbook
(A1.1 = chapter 1-12, A1.2 = chapter 13-24)

Menschen A2 (Deutsch als Fremdsprache), textbook & workbook
(A2.1 = chapter 1-12, A2.2 = chapter 13-24)

Menschen B1 (Deutsch als Fremdsprache), textbook & workbook
(B1.1 = chapter 1-12, B1.2 = chapter 13-24)

(Sicher B1+ (Deutsch als Fremdsprache), textbook & workbook, chapter 1-8)

Teaching and learning methods

Communication, grammar and vocabulary training in class

Workload

Deutsch für Communications Technology I (SS): Total 90 h
- 56 h exercise (presence)
- 22 h revision homework
- 12 h exam preparation

Deutsch für Communications Technology II (WS): Total 90 h
- 64 h exercise (presence)
- 14 h revision, homework
- 12 h exam preparation

Assessment

The credit points will be awarded once the two written exams have been passed. No prerequisites are necessary for exam registration.

Grading procedure

The grade of the module will be the arithmetic mean of the respective grades of the partial module exams weighted by their credit points.

Basis for

-
Master's Thesis

Modules referring to Master Thesis

<table>
<thead>
<tr>
<th>Code</th>
<th>8822280000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECTS credits</td>
<td>30</td>
</tr>
<tr>
<td>Attendance time</td>
<td>keine Angaben</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Cycle</td>
<td>each Semester</td>
</tr>
<tr>
<td>Coordinator</td>
<td>Prof. Dr.- Ing. Robert Fischer (Dean of Student Affairs)</td>
</tr>
<tr>
<td>Instructor(s)</td>
<td>Primary supervisor of thesis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allocation of study programmes</th>
<th>Communications Technology, M.Sc., Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended prerequisites</td>
<td>Desired: specialized elective modules in the scientific area of the thesis</td>
</tr>
</tbody>
</table>
| Learning objectives | Acquisition and demonstration of the following competencies:
- Independent treatment of complex problems, using the skills acquired in the Master's program as well as established scientific methods and knowledge, within a pre-set time frame
- Setup of a project plan for the Master's thesis, including assessment of progress using a continuously updated milestone plan
- Compilation of a thesis in compliance with the established principles of scientific writing
- Presentation of scientific results in comprehensible form before an audience of peers, including scientific discussion |
| Syllabus | dependent on topic |
| Literature | dependent on topic |

Teaching and learning methods

Masterarbeit Selection of a suitable topic at one of the institutes of the faculty, or exceptionally also outside of the faculty (requires permission of the Examination Committee); research of scientific literature, design work and/or experimental work dependent on topic; consultation with the guiding assistants and the primary supervisor.
<table>
<thead>
<tr>
<th>Workload</th>
<th>Active Time: 10 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sum: 900 h</td>
</tr>
<tr>
<td>Assessment</td>
<td>Written thesis and final presentation</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>Grading of results obtained, written thesis, and final presentations by two reviewers in accordance with rules and regulations</td>
</tr>
<tr>
<td>Basis for</td>
<td>-</td>
</tr>
</tbody>
</table>